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The unifying theme of my research is mathematics that transforms abstract questions into con-
crete problems approachable by direct calculational tools. My fields are algebra and topology, and
my interests range broadly from algebraic topology to categorical algebra to representation theory.

My core research program is on the Brauer theory of generalized Galois extensions in
stable homotopy theory. My work in categorical algebra develops a definition and characterization
theorem for the elements of the Brauer group, Azumaya objects, in bicategorical contexts.
Current work in progress applies this to study the relative Brauer group in a Galois extension of
commutative ring spectra. Calculations of norm operations are of particular interest in that project.
A second project joint with Nick Gurski, Peter May, and Angélica Osorno relates the categorical
unit, Picard, and Brauer groups to the classification of stable two-types and their Postnikov
invariants.

My work on power operations with Justin Noel provides explicit computations of a norm operation
in stable homotopy to address a long-standing conjecture about compatibility of power operations
on complex cobordism with a p-local summand known as the Brown-Peterson spectrum. A sec-
ond project in progress develops an obstruction theory for rigidifying up-to-homotopy algebra
maps of spectra.

In two projects with the UGA VIGRE Algebra group we use scheme-theoretic and Lie-algebraic
techniques to compute low-degree cohomolgy for finite groups of Lie type in positive char-
acteristic. And a recent undertaking with John Drake uses a topological point of view to develop
mathematical models for the concept of ecological niche. We also apply the techniques of topological
data analysis to address empirical questions about niche topology.

My work in each of these areas is discussed below, together with an overview of work in progress
and future plans in each area. I also give a one-page description of the undergraduate research
projects I’ve mentored in Section 4.

1. Algebraic Topology

1.1. Calculations for Complex-Oriented Ring Spectra. Complex oriented cohomology theo-
ries have a deep connection with the theory of formal group laws, and this provides both conceptual
and computational access to stable homotopy. One seminal example is the Adams-Novikov spectral
sequence converging to the stable homotpy groups of spheres [Rav03]. The cohomology theory of
complex cobordism is represented by the spectrum MU , and this is the universal complex oriented
cohomology theory. It is a highly-structured ring spectrum and its graded ring of homotopy groups
MU∗ carries the universal formal group law. A spectrum E is complex oriented when it has an
orientation map MU → E, and such a map always endows the graded ring E∗ with a formal group
law; one can use this algebraic structure to study aspects of the spectrum-level map MU → E.

This is of particular interest in the p-local case; the p-local complex cobordism spectrum MU(p)

splits as a wedge of suspensions of the Brown-Peterson spectrum BP . The graded homotopy ring
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BP∗ is an algebra over MU(p)∗, and the question of whether this lifts to a highly-structured MU(p)-
algebra structure for BP has been of particular interest throughout the study of highly-structured
ring spectra (see, e.g., [May75, BMMS86, Ric06]).

In a joint project, Justin Noel and I [JN10] developed computer calculations to study algebraic
conditions on whether such a map is compatible with even-degree power operations, following Quillen
[Qui71] and McClure [BMMS86, VIII]. By producing non-trivial obstructions, in the form of certain
power-series coefficients, we were able to show for p ≤ 13 that the algebra structure present on the
level of homotopy does not rigidify to an MU(p)-algebra structure on BP . This follows from a more
general result regarding p-typical orientations:

Theorem 1.2 ([JN10]). Let p be a prime, and suppose f : MU(p) → E is p-local map of H∞ ring
spectra satisfying:

i. f factors through Quillen’s map to BP.
ii. f induces a Landweber exact MU∗-module structure on E∗.
iii. Small Prime Condition: p ∈ {2, 3, 5, 7, 11, 13}.

then π∗E is a Q-algebra.

Corollary 1.3 ([JN10]). Suppose the Small Prime Condition holds and n ≥ 1. The standard p-
typical orientations on En, E(n), BP 〈n〉, and BP do not respect power operations. In particular,
the corresponding MU -ring structures do not rigidify to commutative MU -algebra structures.

These results are expected to hold also for p > 13; the Small Prime Condition is a practical
requirement imposed only for the computer calculations. Indeed, preliminary results of an under-
graduate project extend these results to p ≤ 23; that work is described in Section 4.3.

1.4. Obstruction theory for homotopical algebra. This project, also joint with Justin Noel,
arose from our interest in determining how closely the category of H∞ algebras approximates the
derived category of E∞ algebras. Intuitively, there ought to be a significant gap between these
two concepts: the first concerns algebras in a derived category and the second concerns a derived
category of algebras. However, there were no examples demonstrating this gap in homotopy theory.
In this work we provide an obstruction theory and examples demonstrating the gap between E∞
maps and H∞ maps.

The category of E∞ algebras is isomorphic to the category of algebras over a particular monad
(triple) P, and our approach addresses the more general question:

Question 1.5. Let T be some nice monad acting on a topologically enriched model category C
and suppose A and B are T -algebras. Suppose we have a diagram

(1.6) TA
Tf
//

��

TB

��

A
f
// B

that commutes in hoC .
Is there a representative of the homotopy class of f such that the corresponding diagram commutes

in C ? In other words, can f be rigidified to a map of T -algebras? If so, is this lift in some sense
unique?

We develop an obstruction theory, in the form of a fringed Bousfield-Kan spectral sequence, which
completely resolves these questions. Let (ET )∞ denote the homotopy category of strict T -algebras
in C and let (HT )∞ denote the category of T -algebras in HoC . The fullness and faithfulness of
the forgetful functor

(ET )∞ → (HT )∞

is analyzed by the obstruction spectral sequence Es,tr ; we have the following two summary results:
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Theorem 1.7 (Johnson-Noel). The forgetful functor (ET )∞ → (HT )∞ is faithful if and only if
Et,t∞ = 0 for t > 0.

Theorem 1.8 (Johnson-Noel). The forgetful functor (ET )∞ → (HT )∞ is full if and only if the
differential dr on E0,0

r is trivial for all r ≥ 2.

A feature of this work we particularly enjoy is that it explicitly resolves the subtle difference
between (ET )∞ and (HT )∞, so we are able to give elementary but nontrivial examples in rational
stable homotopy. For these, we consider the classical case T is the E∞ monad P.

For any space X, we have a mapping spectrum HQX into the Eilenberg-Mac Lane spectrum
of the rationals. These spectra can be constructed directly from the rational cochains on X, and
they inherit an E∞ structure from the cup product. These spectra have the property that their
homotopy groups are the rational homology of the space X:

π−∗(HQX) ∼= H∗(X;Q).

Moreover, the rational cochain maps which induce commutative algebra maps on the level of coho-
mology correspond under this identification to the H∞ maps of spectra:

(1.9) H∞(HQX , HQY ) ∼= Comm Q -alg (H∗(Y ;Q), H∗(X;Q)) .

Example 1.10. Let X = S2 and Y = S3. The obstruction spectral sequence collapses at E2 and
for degree reasons the E∞ map induced by the Hopf map η : S3 → S2 is in the kernel of the edge
map. This provides an example where the forgetful functor spectra fails to be faithful and proves
the following:

Theorem. The Hopf map induces a nontrivial E∞ map HQS2 → HQS3 which is trivial as an H∞
map.

Example 1.11. Let X = N be the Heisenberg nilmanifold, the quotient of the group of uni-upper
triangular 3 × 3 real matrices by the maximal subgroup with all integer entries. A computation
with the Serre spectral sequence shows H∗(N ;Q) is generated by exterior classes x and y in degree
1, polynomial classes α and β in degree 2, with the relations

xy = α2 = β2 = αβ = xα = yβ = xβ + yα = 0.

It follows, moreover, from Eq. (1.9) that the H∞ maps HQN → HQS
2 form a rank-two Q-vector

space generated by the dual classes δα and δβ . However, a calculation of Massey products shows that
there are non-trivial differentials on δα and δβ in the obstruction spectral sequence. This provides
an example where the forgetful functor fails to be full and proves the following:

Theorem. The H∞ maps δα and δβ are not in the image of the forgetful functor E∞ → H∞ and
thus do not rigidify to E∞ maps.

1.12. Future Work: Norm Operations in Galois Extensions. John Greenlees and Peter May
introduced norm operations for equivariant stable homotopy theory in [GM97b]. They use norm
operations in equivariant cohomology to prove analogs of the Atiyah-Segal completion theorem for
module spectra over the ring spectrum of complex cobordism, MU . In recent work on the Kervaire
invariant problem, Michael Hill, Michael Hopkins, and Douglas Ravenel [HHR10] define a spectrum-
level norm functor. For a subgroup H ⊂ G of finite index n, normG

H is a functor from the category
of H-spectra to the category of G-spectra. For an H-spectrum X,

normG
H(X) =

∧
Hi

(Hi)+ ∧H X,

where the Hi form a complete set of cosets of H in G. The action of G is induced by the natural
inclusion of G into the wreath product Σn

∫
H. This is in direct parallel with the definition of the

Evens norm for group-cohomology [Eve91]. This topological norm satisfies the same basic properties
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as the more familiar algebraic norm, including multiplicativity (with respect to the smash product)
and the ever-important double coset formula [HHR10], [GM97b].

In the case that G is cyclic of prime order p, and H is the trivial group, the topological norm is
homotopy equivalent to the extended power construction on a (non-equivariant) spectrum X:

norm
Z/p
1 X ' DZ/pX = EZ/pnZ/p X.

This extended power construction is the basic ingredient in the study of power operations for
cohomology theories; see for example [tD68], [Qui71], and [BMMS86]. The software developed to
compute power operations for [JN10] can be extended to compute norm operations, and one area
for future work is applying these calculations to expand our understanding of Galois theory for
highly-structured ring spectra.

1.13. Ecological Niche Topology. During the Summer of 2011 I began talking with John Drake
in the UGA Ecology department about ecological niches. The concept of a niche is a way that
ecologists abstract a species’ environmental needs from its geographic location. This helps ecologists
address questions about large-scale population dynamics such as predicting invasive behavior or the
effects of climate change. The niche is described as the set of environmental conditions in which
a population can persist, and is usually thought of as a convex subset of the space of relevant
environmental parameters (temperature, precipitation, soil pH, etc.).

There are number of competing attempts to make the niche concept precise, and a dearth of
empirical results against which these attempts can be evaluated. In particular, the convexity as-
sumption is rarely treated in ecological experiment or theory. I joined John’s lab to work on
mathematical models for the concept of a niche, with the goal of producing both theoretical and
empirical conditions which will help to differentiate the various niche theories. Currently we are
combining methods of machine learning—Support Vector Data Descriptors (SVDD) [TD04]—with
homology calculations to answer questions about data collected in the field.

Question 1.14. LetN be the niche of a given species. IsN connected? Simply-connected? Convex?
These same questions can be asked of an empirical approximation, N , derived from experimental
data.

Applied to data collected in the field, the machine learning techniques return N as a union of
balls. The homology of such a region is eminently calculable, and our results will provide the first
empirical answers to the questions above.

2. Categorical Algebra

2.1. Homotopical Brauer Theory. This work develops foundations for Brauer theory in homo-
topical settings. We consider Azumaya objects in closed autonomous monoidal bicategories, and in
particular focus on the triangulated bicategories arising as homotopy bicategories of rings and ring
spectra. (The term “closed” refers to the existence of internal homs, and “autonomous” refers to
opposites such as opposite algebras.)

Now we state the main definitions and results.

Definition 2.2 (Eilenberg-Watts Equivalence). Let A and B be a 0-cells of a bicategory B. We
say A is Eilenberg-Watts equivalent to B if and only if there exists an invertible 1-cell T : A→B.

Definition 2.3 (Brauer Group, Azumaya Objects). Let B be a closed autonomous monoidal bicat-
egory with unit 0-cell k. The Brauer group of B, denoted Br(B), is the group of 1-cell-equivalence-
classes (Eilenberg-Watts equivalence classes) of 0-cells A for which there exists a 0-cell B such that
A⊗k B is Eilenberg-Watts equivalent to k. Such 0-cells are called Azumaya objects.

We give a general characterization theorems of Azumaya objects which generalizes the classical
notion for fields or commutative rings the classical characterization theorem, making computational
work with these objects possible. For example, we have the following:
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Theorem 2.4 ([Joh10]). Let k be a commutative ring spectrum, and A a k-algebra which is cofibrant
as a k-module. Then A is Azumaya over k if and only if A is faithfully projective over k and the
canonical map

A ∧k Aop → Fk(A,A)

is a weak equivalence, where F denotes the mapping spectrum of right k-modules.

We show, moreover, that the homotopical notion of Azumaya we develop coincides with those
of Toën [Toë10] for derived categories of rings and Baker-Richter-Szymik [BRS10] for commutative
ring spectra. Functoriality of our general approach allows us to prove the following:

Theorem 2.5 ([Joh10]). Let k be a commutative ring. The Eilenberg-Mac Lane functor to sym-
metric spectra

H : Ck → CHk
induces an isomorphism of Brauer groups

H : Br(Dk)→ Br(DHk).

Corollary 2.6 ([Joh10]). If k is a field, then Br(DHk) ∼= Br(k). In particular, Br(DHk) = 0 if k
is finite or algebraically closed.

2.7. Future Work: Brauer Groups and Galois Theory. Brauer groups are an established
area of interest in algebra and algebraic geometry, but Brauer theory in homotopical settings is
still an emerging field. My research program focuses in particular on the relative Brauer groups of
Galois extensions. This provides a source for new examples of Azumaya objects (crossed-product
algebras), and generalizes to derived settings the classical connection between Brauer and Galois
Theory.

Chase, Harrison, and Rosenberg [CHR65] established this connection in the case of commutative
rings, and one of their main results is the following:

Theorem 2.8 (Chase-Rosenberg exact sequence). If R→ T is a Galois extension of commutative
rings with Galois group G, then there is a natural exact sequence

1→ H1(G,T×)→ Pic(R)→ Pic(T )G → H2(G,T×)→ Br(T/R)→ H1(G,Pic(T )).

In this theorem, Pic(T )G denotes the subgroup of the Picard group Pic(T ) invariant under the
induced action of G. Two important corollaries illustrate the pivotal role of Brauer/Galois theory
for commutative rings. Recall, for the case of fields, that the Picard group of a field is always trivial.

Corollary 2.9 (Hilbert’s Theorem 90). If Pic(R) = 1, then H1(G,T×) = 1.

Corollary 2.10 (Crossed Product Theorem). If Pic(T ) = 1, then Br(T/R) = H2(G,T×).

I’m currently working on a project studying Amitsur cohomology for spectra, with one goal being
a generalized version of the Chase-Rosenberg sequence for homotopical calculations. This would
enable one to compute Brauer groups and Picard groups for Galois extensions of ring spectra. In
work with Angélica Osorno, described below, we recover a similar exact sequence from categorical
models of stable one-types. A key feature of that work is identifying the relative term via a cokernel
construction.

2.11. Stable n-types. This is a joint project with Nick Gurski, Peter May, and Angélica Osorno
studying categorical models for stable n-types, mainly for n = 1 and 2. Angélica and I have initial
results for n = 1, and the four of us are working on n > 1. This has close ties with earlier work
of Conduché [Con84], Joyal-Street [JS93], Garzón-Miranda [GM97a], and many others. With this
classification we relate the Postnikov invariants of a stable n-type to algebraic data on the categorical
side. This fits into a long exact sequence of homotopy groups paralleling that on the topological
side.
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Definition 2.12. A symmetric Picard groupoid C is a symmetric monoidal groupoid such that
every object is invertible. The category SymPic has as objects the symmetric Picard groupoids and
as morphisms symmetric monoidal functors. A symmetric monoidal functor is a weak equivalence if it
is an equivalence of the underlying categories. The homotopy groups π0C and π1C are, respectively,
the group of isomorphism classes of objects and the group of automorphisms of the unit object.

In the special case that C is the Picard groupoid whose objects are Azumaya k-algebras and
morphisms are isomorphism classes of bimodules, π0C and π1C are, respectively, the Brauer and
Picard groups of k. We show that the homotopy of symmetric Picard groupoids models the ho-
motopy of stable one-types, and use this to obtain algebraic models for Postnikov systems of such.
Two of our results are the following:

Theorem 2.13 (Johnson-Osorno). The stable one-types with π0 = G and π1 = M are classi-
fied by the symmetric structures on a strict and skeletal Picard groupoid with objects G and each
endomorphism group isomorphic to M .

Theorem 2.14 (Johnson-Osorno). Let F : C → D be a map of Picard groupoids. There is a
symmetric monoidal bicategory Coker(F ) with a universal map D → Coker(F ) which gives rise to
a long exact sequence of homotopy groups

0→ π2 Coker(F )→ π1C → π1D → π1 Coker(F )→ π0C → π0D → π0 Coker(F )→ 0.

3. Representation Theory

During my time at UGA I became involved in the VIGRE1 Algebra research group. This is
a large research group including graduate students, postdocs, and senior faculty. The group has
been working for several years on projects in representation theory of finite groups of Lie type; I
participated in their sixth and seventh terms, and we wrote two papers during that time: [UGA11a,
UGA11b].

We work over an algebraically closed field k of characteristic p, and let G be a simple, simply-
connected algebraic group over Fp. Our results are in the form of specific low-degree cohomology
calculations via comparison between the cohomology of a finite group of Lie type, G(Fq), and the
cohomology of the corresponding algebraic group, G. These calculations significantly extend—
and provide new proofs for—earlier results of Cline, Parshall, Scott, [CPS75], Jones [Jon75], and
Jones-Parshall [JP76] who considered some special cases of our coefficient modules. Here are two
representative results:

Theorem 3.1 ([UGA11b]). Let p be a prime, q = pr, and assume p > 3 if G is of classical type or
p > 5 if G is of exceptional type. Suppose λ ≤ ωj for some j, and suppose the Weight Condition
(defined below) holds for λ. Then the restriction map

Ht(G,L(λ))→ Ht(G(Fq), L(λ))

is an isomorphism for t = 1, 2.

The Weight Condition is only needed for the degree-two isomorphism, and holds when λ is neither
the highest short root nor the highest long root (except for the case G = A2, with q = 5.) It is a
technical but approachable condition:

Definition 3.2 (Weight Condition). We say that λ ∈ X(T )+ satisfies the Weight Condition if

max
{
−(ν, γ∨)

∣∣γ ∈ ∆, ν a weight of Ext1Ur
(k, L(λ))

}
< q.

We also have results for the finite group cohomology, using a calculation of the algebraic group
cohomology and the comparison Theorem 3.1:

1VIGRE is an NSF program promoting the Vertical InteGration of Research and Education.
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Theorem 3.3 ([UGA11b]). Under the assumptions above, H2(G(Fq), L(λ)) = 0 except possibly
seven cases in types E7 and E8, and infinitely many cases in type Cn when λ = ω2i and p ≤ n.

The seven exceptional cases are unknown only for specific primes 5, 7, 31. We give an analysis
of the remaining interesting case, G = Cn = Sp2n and λ = ω2i, with a combinatorial description
of Weyl module composition factors due to Adamovich and communicated by Kleshchev-Sheth
[KS99, KS01]. Using using software I developed for this purpose [Joh11], we have a number of
interesting non-vanishing results for degree-two cohomology of Cn. These are listed in Figures 1
and 2. The reader will note that there is a tantalizing base-p pattern to the results. We have yet to
formulate a general theorem, but this is the subject of ongoing work of myself and Chris Drupieski.

n j
6 6
7 6
8 none
9 6
10 6
11 none
12 6
13 6
14 none

n j
15 6, 8
16 6, 10
17 none
18 6, 14
19 6, 16
20 18
21 6, 18
22 6, 18
23 18

n j
24 6, 8, 18
25 6, 10, 18
26 none
27 6, 14
28 6, 16
29 18
30 6, 18
31 6, 18
32 18

n j
33 6, 8, 18
34 6, 10, 18
35 none
36 6, 14
37 6, 16
38 18
39 6, 18, 20

Figure 1. (p = 3) All values of n and j for which H2(Sp2n(Fq), L(ωj)) 6∼= 0 for
n < 40. In each case, H2 is 1-dimensional.

n j
10 10
11 10
12 10
13 10
14 none
15 10
16 10
17 10
18 10
19 none

n j
20 10
21 10
22 10
23 10
24 none
25 10
26 10
27 10
28 10
29 none

n j
30 10
31 10
32 10
33 10
34 none
35 10, 12
36 10, 14
37 10, 16
38 10, 18
39 none

n j
40 10, 22
41 10, 24
42 10, 26
43 10, 28
44 none
45 10, 32
46 10, 34
47 10, 36
48 10, 38
49 none

n j
50 10, 42
51 10, 44
52 10, 46
53 10, 48
54 50

Figure 2. (p = 5) All values of n and j for which H2(Sp2n(Fq), L(ωj)) 6∼= 0 for
n < 55. In each case, H2 is 1-dimensional.
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4. Undergraduate Research

My undergraduate mentoring is motivated by my research programs, but my main goals are to
let students experience mathematics freely while guiding them toward a piece of work they can be
proud of. I’ve been involved with two undergraduate research projects, summarized below.

4.1. Cross-polytope numbers. One of my students, Jack Farnsworth, worked on a combinatorial
problem related to the number of paths of given length along the integer lattice in Rd. He related
this to the cross-polytope numbers in dimension d, �d(n), defined in [Kim03] as a generalization of
Euler’s polygonal numbers. Here are the low-dimensional cases:

�1(n) = n, �2(n) = n2, �3(n) =
2

3
n3 +

1

3
n.

Jack was an extremely motivated student and almost entirely self-directed. My role was mainly
to help him find mathematical expression for the ideas and questions he was considering. His main
theorem uses a recursive formula for the path-counting problem to give a recursive formula for the
cross-polytope numbers:

Theorem 4.2. �d(n) = �d−1(n) + �d(n− 1) + �d−1(n− 1)

4.3. Complexity of the p-typical formal sum. Another student, Eddie Beck, wanted to work
on something related to the formal group law computations in my previous work. He developed
complexity estimates for the algorithms, giving a detailed analysis of the p-typical formal group law
which has resulted in a number of substantial improvements. His preliminary results extend the
range of primes for which the results of [JN10] hold:

Theorem 4.4. Quillen’s map MU → BP does not carry H∞ structure for p = 17, 19, 23.

By discovering a connection with specialized partitions called Mahler partitions [Mah81], Eddie
was able to give a parallelizable algorithm for the formal sum.

Definition 4.5. Let n and p be positive integers. A base-p Mahler partition of n is a sequence
k = (k0, k1, . . .) such that

n =
∑

kip
i

for nonnegative integers ki. (Note that there is no restriction on the size of ki relative to p.) The
length of a partition is |k| =

∑
i ki. If k is a Mahler partition of n (working implicitly at a fixed

base p), we write k . n.

Definition 4.6. Let p be a prime. We define, respectively, the coefficients of the universal p-typical
logarithm, exponential, and formal sum as follows:

log(t) =
∑

`it
pi F (x, y) = exp(log(x) + log(y))

exp(t) = log−1(t) =
∑
i

eit
i =

∑
i

ei(log(x) + log(y))i

Theorem 4.7. Let c(n) be the term of total-degree n in F (x, y), so F (x, y) =
∑

n c(n). Then

c(n) =
∑
k.n

f(k)

where the sum is over all base-p Mahler partions of n and

f(k) = e|k| ·
∏
i

`kii (xp
i

+ yp
i
)ki · |k|!∏

ki!
.
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