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Introduction
Complex Cobordism

MU is a nexus in stable homotopy theory.

@ There is a spectrum MU satisfying:
mnMU = {Complex cobordism classes of n-manifolds} .
@ There is a spectral sequence (ANSS)
Extyiy my(MU., MU,) = 7.S.

@ MU serves as a conduit between the theory of formal group laws
and stable homotopy theory.

This project: use power series calculations to get results about power
operations in complex-oriented cohomology theories J
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Introduction
Goal
The p-local Brown Peterson spectrum BP admits an E ring structure

Partial Results:
@ (Basterra-Mandell) BP is E4.
@ (Richter) BPis 2(p? + p — 1) homotopy-commutative.

@ (Goerss/Lazarev) BP and many of its derivatives are
E; = A-spectra under MU (in many ways).

@ (Hu-Kriz-May) There are no Hy, ring maps BP — MUy).
H.. is an “up to homotopy” version of E.,
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Introduction
Goal

Theorem (J. — Noel)

Suppose f : MU, — E is map of H., ring spectra satisfying:
@ f factors through Quillen’s map to BP.
@ finduces a Landweber exact MU,-module structure on E,.
© Small Prime Condition: p € {2,3,5,7,11,13}.

then 7.E is a Q-algebra.

Application: The standard complex orientations on Ej,, E(n), BP{(n),
and BP do not respect power operations;

The corresponding MU-ring structures do not rigidify to commutative
MU-algebra structures.
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Introduction

@ Motivate structured ring spectra

@ Describe MU, BP, and the connection to formal group laws
@ Topological question ~~ algebraic question (power series)
@ Display some calculations
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Introduction Background

Spectra <+ Cohomology theories

A (pre-)spectrum is a sequence of pointed spaces, Ej, with structure
maps

YEp— n+1

such that the adjoint is a homotopy equivalence:
E, = QE,.1.
This yields a reduced cohomology theory on based spaces:

E"(X) = [X, En] & [X,QEq 4] = EMT(ZX)
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Introduction Background

Spectra <+ Cohomology theories

Some motivating examples:

@ Ordinary reduced cohomology is represented by
Eilenberg-Mac Lane spaces

H"(X,R) = [X,K(R, n)]

@ Topological K-theory is represented by BU x Z and U
(Bott periodicity):

[X,BU xZ] n=even

KU(X) = {[x, U] n = odd

@ Complex cobordism is represented by
MU(n) = colimgQ9TU(n + q)

MU"(X) = [X, MU(n)]

@ etc.
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Introduction Background

Spectra <+ Cohomology theories

From a spectrum E we get an unreduced cohomology theory on
unbased spaces by adding a disjoint basepoint.
For an unbased space X,

E*(X) = E"(X;) = [X,, E.]
E*(—) takes values in graded abelian groups.
When E is a ring spectrum, E*(—) takes values in graded commutative

rings (with unit).
E* denotes the graded ring E*(pt.).
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Introduction Background

Spectra <+ Cohomology theories

Brown Representibility
Every generalized cohomology theory is represented by a spectrum.

—

Viewed through this lens, it is desirable to express the “commutative
ring” property in the category of spectra.

Doing so allows us to work with cohomology theories as algebraic
objects.

Difficulty: organizing higher homotopy data
(motivates operads & monads)

There are many good categories of spectra, having well-behaved
smash products and internal homs.
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Introduction Background

Structured Ring Spectra

The category of E., ring spectra is one category of structured ring

spectra. An E., ring spectrum is equipped with a coherent family of
structure maps

ENs —>E

|

Ds

which extend over the Borel construction DsE = EX g xx ENS;
a “homotopy-fattened” version of E®

coherent: DsDy — Dgt, Ds A Dy — Dgsyt, etc.
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Introduction Background

Power Operations and H,, Ring Spectra

@ The definition of E,, predated applications by about 20 years

@ For many applications, it suffices to have the coherent structure
maps defined only in the homotopy category.
This defines the notion of an H,, ring spectrum.

@ This data corresponds precisely to a well-behaved family of power
operations in the associated cohomology theory.

For an unbased space X, and = < ¥,
P, : EO(X) % E%(DsX) 2 EO(Br x X).

u: Hy structure maps
0*: pulling back along diagonal X — X*¢
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Introduction Background

Power Operations and H,, Ring Spectra

MU has a natural H, ring structure arising from the group structure on
BU.

Thom isomorphism for MU =- wider family of even-degree power
operations ' '
P, : MU?(X) — MU?™(Br x X)

<X,
take 7 = Cp , X = pt.

MU*(CP>) = MU*[x] also has a (formal) group structure induced by
the multiplication on CP*°. This gives us computational access to the
MU power operations.
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Formal Group Laws
Formal Group Laws

A (commutative, 1-dimensional) formal group law over a ring R is
determined by a power series F(x,y) € R[x, y] which is unital,
commutative, and associative, in the following sense:

F(x,0) = x = F(0, x).

@ F(x,y)=F(y,x).

@ F(F(x,y),z) = F(x, F(y, 2)).

@ Example (Gj): F(x,y)=x+Y.
°
)

Example (Gm): F(x,y) =Xx+y + xy.
Example (MU): CP>* x CP>* — CP* induces

MU*(CP>) — MU*(CP> x CP>)
I I
MU*[x, y]

X | X+muy
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Formal Group Laws
Formal Group Laws

Theorem (Lazard)
There is a universal formal group law

Funiv.(x,y) = Y ajx'y’

and it is defined over

L=17[U;,Us, Us,.. ]

Theorem (Quillen)

MU* = Z[Us, Us, Us, ... ]

and
X+mu Y = Funiv.(X,Y)
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Formal Group Laws MU* and BP*

MU* and BP*

MU* = Z[Uy, Us, Us, ... ]

MU™ @ Q = HQ.(MU) = Q[my, mz, m3, ... ]

[CP" € MU~2"
Under the Hurewicz map to rational homology

[CP™ — (n+ 1)m.

Q|[[CPLICP?,[CPY,.. | = MU 2 Q
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Formal Group Laws MU* and BP*

MU* and BP*

I«

MU* BP*
MU* ®Q ——BP*®Q

. . k_
m,-H{o if i #p~—1

U ifi=pk—1

Q[t1,02,0s,...] — BP* 2 Q

rR[CPP' 1] = pfey e BP2P N g
r[CP" =0 forn#pk—1
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Formal Group Laws MU* and BP*

MU* and BP*

MU = \/ y9BP
some d

BP* =~ Z(p) [vi, Vo, v, .. ]

Hazewinkel generators:

1+p
V.

2 :ﬁ’ 5222 1727
p p p
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Formal Group Laws loggp, expgp, and formal sum

loggp, eXpgp, and formal sum

Rationally, every formal group law is isomorphic to the additive formal
group
X +£ y = logg (Ioge(x) + loge(y))

loggp(t) = t + (1P + t7° + .- (p-typical)
expgp(t) = logga(t)

£ +8p X = exppp (l0ggp(§) +10ggp(X) ) =&+ X+ -+
(¢ =i&+ -
=& ()¢
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Calculations Topological Question

H ring structure for BP?

Consider Pg, : MU?(pt.) — MU2P'(BCp)

MU*(BCp) = MU*[€]/[pl¢ > MU*[€]/{p)¢
BP*(BCp) = BP*[¢]/[pl¢ * BP*[£]/(p)¢

2n
Pcp

MU MUPP*[] /[plE ——2—= MUP*+4n(p-1[e] /()¢

ll’* \Lr* \LI’*
P, 20N

BP2: — — <~ = BP?P[€]/[pl¢ — > BP?P+4n-)[¢] / (p)

Calculate MC,, = r.q.a5"Pc,[CP"]
for n # pk — 1
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Calculations Topological Question

H ring structure for BP?

then the dotted arrow makes the diagram commute

If the map r : MU — BP carries an H,, structure,
and MC, = 0 for n # p* — 1 J

2.
Fop q.a8"

MU?* MU?P*[€]/[plé

L

BP?: — — < = BP?+[€] /[pl¢

MUR40P-D[c] /(p)¢

5 ppeperanee]/(p)e

The same argument applies to any
MC, = r.q.a3"Pc,[CP"] map of ring spectra
mu L E - BP.
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Calculations Cyclic Power Operation

Pc,: Quillen’s cyclic product formula

1%

MU*(CP>) = MU*[X]
MU*(BC, x CP™) = MU*[x, €] /[p)é
)

)

1

12

BP*(CP>) =~ BP*[x]
BP*(BC, x CP>) = BP*[x,£]/[pl¢

p—1

r.Pc,(x) = H([’]ﬁ +8p X)
i—0
= (X

>0

This defines the classes a;
ap is the MU-Euler class of the reduced regular representation of C,
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Calculations Cyclic Power Operation

Theorem (Quillen)

a"Pc,[CP" = > a*s,[CP"]

|a|=n

multi-indices a = (g, a1, - . .)
@ __ A0 41

lal = ZIZO Q;j la|" = 2121 faj

Adams: s,[CP"] = coeffn,a[(CP”—W] (modified multinomial coefficient)
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Calculations Cyclic Power Operation

Putting these together gives an explicit formula for
MC,, = r.q.a5"P¢,[CP"] (McClure):

n
N —(n+1
MC, — agn+1 Z r*[CPn—k] _ (Zizoaizl) (n+1) [zk]
k=0

9(2)[2"] extracts
the coefficient of z in g(2)
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Calculations Cyclic Power Operation

a(§) =¢

ai(&) =1 — g+ v2e2 + (—2v3 —2w)E3 + (Bv{ + 4viva)e* + (—4v? — 6
ax (&) = vZe + (—4v3 — 3w)E2 + (10v + 11y 1)e3 + (—21v2 — 28V21,)¢
a3(€) = (—2v2 — 2w)¢ + (10v4 4+ 11v4v2)e2 + (—34v2 — 43v210)e3 + (10
as(€) = (Bvf +4vivo)€ + (—21v2 — 28v210)e2 + (101v8 + 1643 v, 4 341
as(&) = (—4v? — 6V2vo)¢ + (430 4 75v3vs 4 18v5)€2 4 (—275v] — 5514
as(&) = (6v2 + 12v3 v, + 4v3)E + (—88v] — 190V vy — 89vyv3 — 14v3)E2
ar(&) = (—10v{ — 24vivy — 14v4v3 — 4va)¢ + (169v8 + 420V v, + 257 VA
ag(€) = (15v2 + 40v2vyp + 28v2VE + 8vyv3)¢ + (—312v5 — 880vPv, — 68E
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Calculations Cyclic Power Operation

ag(€) = 262 — 2vy&* + 8v2€® — 40v3E8 + (170v — 170v,)¢™0 + (—648V7
ar(§) = 3¢ — 8v4 &% 4+ 36v7E® — 216v3¢” + (1148v) — 94415)¢° + (—5352
ax(€) =1 — 912 + 63v2e* — 491v3¢® 1 (33364 — 2331v,)¢8 + (1929
as(€) = —3vi¢& + 53v2¢% — 606VP¢° + (5466v; — 339612)¢” + (—40124v;
a4(€) = 21v2¢2 — 435v3¢* + (5547v; — 3248v,)c8 + (—53343v7 + 10997
as(€) = 3vZ¢ — 179v13§3 (3588v; — 2142v,)¢° + (—47382v32 + 94662v,
as(&) = —38v3e2 + (1454v; — 994v,)e* + (—28406v7 + 583524 1,)<8 +
ar(€) = —3v3¢ + (341v) — 324w,)€3 + (—11256V; + 25956 V4 12)¢° + (17
ag(&) = (36v4 — 72v2)e2 + (—2748v2 + 8268v4 vo)c* + (671209 — 5189
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Calculations Cyclic Power Operation

ap(€) = 24¢* — 1680v4£8 4 370008v2¢ 12 — 123486336v5¢1® + 49940181
ai(§) = 5053 5430vi¢” +1551072v2¢"! — 636927168v3¢® + 3065334
ax(¢) = 35¢% — 7328v4£8 + 2893808v2¢ ™0 — 1508394320v3¢™* + 880153
as(€) = 10¢ — 5498v4¢° + 3207450v2¢® — 2188580410v3¢ ™3 + 1576841¢
as(¢) = 1 — 2550v¢* + 2370055v2¢8 — 2186482212v3¢ "2 + 198178597
as(&) = —750v4&3 + 1237150v2¢7 — 1600089600v3¢ ' + 186105245632
ag(€) = —130v1£2 + 469174v2¢5 — 889462830v3¢ "0 + 1357095174226V
a7(¢) = —10vy€ + 129998v2¢® — 383662650v3¢® + 787791379990 v ¢ 13
(&) =

ag(¢) = 25850v2¢* — 129787730v3¢8 4 369983450960V ¢'2 — 7862998
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Calculations = (p)&

(P)¢

(2) =2 &vi + 2682 + & (=88 — 7w +€* (26Vf + 30115 ) + €5 (¢
(3) = 3 — 8¢2vy 4 72¢*v2 — 84083 + ¢8 (9000v14 — 6560v2) +¢10 (88

(5) = 5 — 624¢* vy + 39000068 v2 — 34109400062 v3 4 347012281200¢ ¢
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Calculations

Pc,mod (p) p=2

a(§) =¢

a1(&) =1+ v+ Vit + v + (v + o + ) + vivag” + (v + Vi
(&) = VPE + vol® + v 1o€® + et + vne® + (Vive + )€l + (v + v
a3(§) = Vie? + (V) + i ve + vE)EH + vivee® + (v + P e)e® + (v + e
a4(§) = Vi€ + (v + i) + (i va + Vi3 + V)t + (Vi va + vy vg)E° +
as(€) = VB2 + (V] + vivo + vivB)e® + (V8 + VBVE + vy va) et + (V3 + VBV
as(&) = (v{ + v Vz )52 (Vf + V8 + vivg)e® + 36 + (V{0 + vavg)€® +
ar(€) = v + (v{1 + vBva + vPv2)E® + (VBVE + vPva)e® + (vi3 4+ v{vs A
ag(€) = Vi€ + V€% + (v + vIvE)E + (v + Vi3 + vive)et + (VPVE + 1
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Calculations Pc,, mod (p)

p=23
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Calculations Pc,, mod (p)

Pc,mod (p) p=5

)

)

)

)

) =1 (gap) + 4v{2e® + (v]3 + 2v] vp)e52 + 4v2v2¢56 1 312680 4 2y
)

)

)

)
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Calculations Sparseness

Classes a; are zero unless i is divisible by p — 1.

@ C; acts on BCp

@ In BP*(BCp) an element w € C; acts on [i]¢ by
[11§ — [wil¢

@ The cyclic product [T7- ([i]¢ +8p X)
is Cg—invariant

e a; € BPAP--1)(BC,)%

e H*(BC,)% = 7/plcP~1]is concentrated in degrees divisible by
2(p—1)

@ Atiyah-Hirzebruch =
non-zero g; are concentrated in degrees divisible by 2(p — 1)

o = (p—1)i
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Calculations Sparseness

Sparseness for MC,

The obstructions MC,, are non-zero only if nis divisible by p — 1.

@ p—1isone less than a power of p

@ 2(p — 1) is not of the form p* — 1
r,[CP2P=1)] = 0 in BP*

First case of interest: n=2(p — 1)

MCo(p—1)(€) = & *n[CPP=I] (—(2p — 1)apae-1))
+ 8" [CP] (—(2p — 1)a0az(p-1) + P(2P — 1), y))

=(2p—1 )aﬁp_4 (—v1 aod(p—1) — dodz(p—1) T Pa?p_n)

v

[CPO] =1 and r,[CPP~] = v
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Calculations The obstructions MCp,

The obstructions MC,, p=2

MCy(€) = e2v24+&3vp4-* (vf' + v vz>+§7 (v{ + vg)+€8 (v18 + v vs) +¢9 (
MCo(§) = €8 (v§ + VB ) +¢7 (V] + o) +€° (Viva + vavs) +603+¢™0 (Vi3
MCs(€) = Pv9+¢7 (V14V2 + Vi V§)+§8 <V18 + V2o 4 vy V3> +£10 (v11° + v

MCy(€) = £"0vfv2 ¢ (v111 + VB + VPVE + v14V3>+§12 <v19v2 + 33+
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Calculations The obstructions MCp,

The obstructions MC,, 2<p<1i3

p=3:MCy(&) = 2vP6% +2v/%2* 1 2vvpe?® 1 (2v8vp + viV3)E2 + (
p=5:MCg(&) = 3v{0¢38 + (4v]” + v]1vp)e% 1 (3v{8 4 4vPV2)e%® 1 C
p=7:MCyo(€) = 4v22¢192 1 (4v23 + 2v/0vp)¢1%8 + (V24 + 4v/®v; - F
p=11:MCo(€) = 9v3*¢%0 + (8v35 + 6V231,)e5%0 4 (7v36 4 v24y, 4 5

p=13: MCoy(€) = 11v{0™* 1 (6v! + 6v271,)e75 + O(¢7%8)
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Calculations The obstructions MCp,

The obstructions MC,, p>13

Conjecture (strong form)
For any prime p, the coefficients of

) 2
V13p+1£5p —8p+3 and V12p+1 ngSP —7p+2

are non-zero in MCy(,_+).
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Calculations The obstructions MCp,

The obstructions MC,,

p | deg(MCy(p_1) | 5p° —8p +3 term time
2 0 7 v fast
3 8 24 | 2v/0¢2 fast
5 48 88 | 3v]6¢88 fast
7 120 192 | 4v22¢192 | < 1/2 day
11 360 520 9v134§52° ~ 4 days
13 528 744 | 11v40¢74 | L 22 days
17 960 1312 ?2? ?2?
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Conclusion
Conclusion

Theorem (J. — Noel)

Suppose f : MU, — E is map of H., ring spectra satisfying:
@ f factors through Quillen’s map to BP.
© finduces a Landweber exact MU,-module structure on E,.
© Small Prime Condition: p € {2,3,5,7,11,13}.

then 7. E is a Q-algebra.

Application: The standard complex orientations on Ej,, E(n), BP(n),
and BP do not respect power operations;

The corresponding MU-ring structures do not rigidify to commutative
MU-algebra structures.

Thank Youl!
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