Higher Chromatic Analogues of Twisted K-theory

Mehdi Khorami

Jan 17, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

К	complex K-theory spectrum
$K(\mathbb{Z},n)$	Eilenberg-Maclane space
$\mathbb{C}P^{\infty}=K(\mathbb{Z},2)$	infinite orthogonal group

There is a map of spectra $\Sigma^{\infty} \mathbb{C}P^{\infty}_+ \to K$ that represents the action of line bundles on K-theory. This map gives rise to a $\Sigma^{\infty} \mathbb{C}P^{\infty}_+$ -module structure on K:

 $\Sigma^\infty \mathbb{C} P^\infty_+ \wedge K \to K \wedge K \to K$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

К	complex K-theory spectrum
$K(\mathbb{Z},n)$	Eilenberg-Maclane space
$\mathbb{C}P^{\infty}=K(\mathbb{Z},2)$	infinite orthogonal group

There is a map of spectra $\Sigma^{\infty} \mathbb{C}P^{\infty}_+ \to K$ that represents the action of line bundles on K-theory. This map gives rise to a $\Sigma^{\infty} \mathbb{C}P^{\infty}_+$ -module structure on K:

$$\Sigma^{\infty} \mathbb{C}P^{\infty}_{+} \wedge K \to K \wedge K \to K$$

Precisely, if *L* is the universal line bundle on $\mathbb{C}P^{\infty}$ and ξ_n is the universal bundle on BU(n), the tensor bundle $L \otimes \xi_n$ is an n-dimensional bundle over $\mathbb{C}P^{\infty} \times BU(n)$ and is classified by a map

$$\mathbb{C}P^{\infty} \times BU(n) \longrightarrow BU(n)$$

- Let X be a space and $H \in H^3(X, \mathbb{Z})$.
- *H* is classified by a map X → K(Z, 3), and the induced bundle from the path loop fibration on K(Z, 3) is a principal CP[∞]-bundle P → X on X.

So, we have "action" maps:

•
$$\Sigma^{\infty} \mathbb{C} P^{\infty}_+ \wedge \Sigma^{\infty} P_+ \to \Sigma^{\infty} P_+$$

•
$$\Sigma^{\infty} \mathbb{C} P^{\infty}_+ \wedge K \to K$$

We form the "Generalized Thom spectrum"

$$\Sigma^{\infty}P_{+}\wedge_{\Sigma^{\infty}\mathbb{C}P^{\infty}_{+}}K$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

So, we have "action" maps:

•
$$\Sigma^{\infty} \mathbb{C} P^{\infty}_+ \wedge \Sigma^{\infty} P_+ \to \Sigma^{\infty} P_+$$

•
$$\Sigma^{\infty} \mathbb{C} P^{\infty}_+ \wedge K \to K$$

We form the "Generalized Thom spectrum"

$$\Sigma^{\infty}P_{+}\wedge_{\Sigma^{\infty}\mathbb{C}P^{\infty}_{+}}K$$

Definition

The H-twisted K-homology of X is

$$K_*(X,H) = \pi_*(\Sigma^{\infty}P_+ \wedge_{\Sigma^{\infty}\mathbb{C}P_+^{\infty}} K)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If H = 0, then $K_*(X, H) = K_*X$, as expected.
- Twisted K-theory has application in mathematical physics. Certain invariants take values in twisted K-theory, rather than untwisted K-theory
- Recent works of Freed-Hopkins-Teleman show that twisted equivariant K-theory is related to Verlinde algebra.

There is a spectral sequence

$$\operatorname{Tor}_{s,t}^{K_*(\mathbb{C}P^\infty)}(K_*P,K_*) \Rightarrow K_*(X,H)$$

• Here K_* is a $K_*(\mathbb{C}P^\infty)$ -module via the ring map

$$K_*(\mathbb{C}P^\infty) \to K_*K \to K_*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• K_*P is a $K_*(\mathbb{C}P^{\infty})$ -module via the action of $\mathbb{C}P^{\infty}$ on P.

Theorem (K.)

In the spectral sequence above,

$$Tor_{s,t}^{K_*(\mathbb{C}P^\infty)}(K_*P,K_*)=0$$

for all s > 0 and so

$$K_*(X,H) \cong K_*P \otimes_{K_*(\mathbb{C}P^\infty)} K_*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note that:

- The map $K_*(\mathbb{C}P^\infty) \to K_*$ is far from being flat!
- In general K_*P is not flat over $K_*(\mathbb{C}P^{\infty})$.

 Not only is K_{*}P a K_{*}(ℂP[∞])-module, it's a comodule over K_{*}K, the algebra of cooperations of K-theory. It's enough to show that the functor

$$-\otimes_{K_*(\mathbb{C}P^\infty)}K_*$$

is exact on the category of $K_*(\mathbb{C}P^\infty)$ -modules which are comodule over K_*K .

• The rings $K_*(\mathbb{C}P^{\infty})$ and K_*K are very close!

What do I mean by "the rings $K_*(\mathbb{C}P^{\infty})$ and K_*K are very close"?

Theorem (Snaith)

Let $\beta : S^2 \to \Sigma^{\infty} \mathbb{C}P^{\infty}_+$ be the Bott map. Then the inclusion $\mathbb{C}P^{\infty} \cong BU(1) \to BU \times \mathbb{Z}$ localizes to an equivalence

 $\Sigma^{\infty} \mathbb{C} P^{\infty}_{+} [\beta^{-1}] \simeq K$

Thus

$$K_*(\mathbb{C}P^\infty)$$
 $[\beta^{-1}] \cong K_*K$

• The element eta maps to 1 under the map $K_*(\mathbb{C}P^\infty) o K_*.$ So,

$$\begin{split} & \mathcal{K}_* \mathcal{P} \otimes_{\mathcal{K}_* (\mathbb{C} \mathcal{P}^\infty)} \mathcal{K}_* \cong \mathcal{K}_* \mathcal{P} \; [\beta^{-1}] \otimes_{\mathcal{K}_* (\mathbb{C} \mathcal{P}^\infty) [\beta^{-1}]} \mathcal{K}_* \\ & \cong \mathcal{K}_* \mathcal{P} \; [\beta^{-1}] \otimes_{\mathcal{K}_* \mathcal{K}} \mathcal{K}_* \end{split}$$

It's enough to prove that the functor

$$-\otimes_{K_*K}K_*$$

is exact on the category of K_*K -modules which are comodules over K_*K .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In short (K_*K, K_*) is a Hopf Algebroid, and K_*P [β^{-1}] is a comudule over it.

Quite generally, suppose (S, k) is a commutative Hopf algebroid, and M is a comodule over it. Then

Theorem (K.)

The functor $- \otimes_S k$ is exact from the category of comodules M over S which are also modules over S via a map of comodules $S \otimes_k M \to M$ to the category of groups.

- \mathbb{G}_n : Extended Morava stabilizer group
- $S\mathbb{G}_n$: Kernel of the homomorphism det : $\mathbb{G}_n \to \mathbb{Z}_p^{\times}$
- E_n : Morava E-theory

Let R_n denote the homotopy fixed point spectrum of E_n under $S\mathbb{G}_n$ action, that is

$$R_n = E_n^{hS\mathbb{G}_n}$$

Theorem (C. Westerland)

There exist a map $\rho_n : S < det > \rightarrow L_{K(n)} \Sigma^{\infty} K(\mathbb{Z}_p, n+1)_+$ and an equivalence of E_{∞} -ring spectra

$$L_{\mathcal{K}(n)}\Sigma^{\infty}\mathcal{K}(\mathbb{Z}_p, n+1)_+[\rho_n^{-1}] \to R_n$$

Note: When n = 1, R_1 is the p-adic K-theory, and ρ_1 is the K(1)-localization of β .

- There exist a map $L_{\mathcal{K}(n)}\Sigma^{\infty}\mathcal{K}(\mathbb{Z}_p, n+1) \to R_n$.
- For a K(n)-local space X equipped with a class H ∈ Hⁿ⁺²(X, ℤ_p), we define the K(n)-local twisted R_n-theory of X to be

$$R_{n*}(X,H) = \pi_*(\Sigma^{\infty} P_+ \wedge_{L_{K(n)}\Sigma^{\infty} K(\mathbb{Z}_p,n+1)} R_n)$$

where $P \rightarrow X$ is the bundle induced by H.

Theorem (K.)

There is an isomorphism

$$R_{n*}(X,H) \cong R_{n*}P \otimes_{R_{n*}(L_{K(n)}\Sigma^{\infty}K(\mathbb{Z}_p,n+1)_+)} R_{n*}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Note: When n = 1, this result is the K(1)-local version of the universal coefficient isomorphism for twisted K-theory.