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1. Introduction

Covering spaces were introduced as useful tools in computing the fundamental groups of various
topological spaces. We give here a quick review of the de�nition of covering spaces.

De�nition 1.1. Let p : E → B be a continuous surjection. An open set U ⊆ B is said to be
evenly covered if its inverse image p−1 (U) can be written as the disjoint union of open sets
Vα ∈ E, such that for each α, the restriction of p to Vα is a homeomorphism of Vα onto U .

De�nition 1.2. If for every b ∈ B, there is an evenly covered open subset of B containing b, then
p is a covering map, and E is a covering space for B.

Notice that for every point b ∈ B, the subspace topology on p−1 (b) is the discrete topology.
Covering spaces can be generalised to the case in which the preimage p−1 (b) is not discrete. To
do this, we make the following de�nition:

De�nition 1.3. A locally trivial �bre bundle is a quadruple (E,B, F, p) where E, B and F
are topological spaces, and p : E → B is a map possessing the following properties:

(1) Any point b ∈ B admits a neighbourhood U with the preimage p−1 (U) being homeomorphic
to U × F .

(2) The homeomorphism ψ : U × F → p−1 (U) is consistent with the map p, i.e. the following
diagram commutes:

De�nition 1.4. In the locally trivial �bre bundle de�ned above, we say that E is the �bre space ,
B is the base space , F is the �bre, and p is the projection or �bre map.

Note that the pre-image of each point b ∈ B, p−1 (b), is homeomorphic to F , since ψ restricted to
{b}×F is a homeomorphism between {b}×F and p−1 (b), and {b}×F is certainly homeomorphic
to F .

Locally trivial �bre bundles as described in the above de�nitions is typically denoted as F →
E

p−→ B. A �bre bundle shows that locally, E looks like the space B × F , although this need not
necessarily be true globally. Below, we give a few examples of locally trivial �bre bundles, or more
simply, �bre bundles:

Example 1.5. For any space B, let E = B × F . Then de�ning p as the projection map and ψ
as the identity map, we clearly obtain a �bre bundle. In this case, E is both locally and globally
homeomorphic to B × F . Such �bre bundles are known as trivial .
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Figure 1.1. The Möbius band as the �bre space of S1.

Example 1.6. Given a space B and a covering space E, every point b ∈ B has an evenly covered
open subset U ⊆ B containing b. Now, p−1 (U) can be expressed as the disjoint union of open
subsets Vα ⊆ E, with α ∈ A for some indexing set A. Then (E,B,A, p) form a �bre bundle, with
the homeomorphism ψ : U × A → E mapping U × {α} to Vα. Hence every covering is a �bre
bundle.

Example 1.7. The Möbius band is the �bre space of a bundle with base space S1 and �bre I.
Viewing the Möbius band as a rectangle with opposite sides of the rectangle glued together in the
opposite orientation, the �bre map p maps the rectangle to the dashed line in Figure 1.1, which
is homeomorphic to S1. The open neighbourhood U of S1 shown in Figure 1.1 has a strip in the
rectangle as its preimage. This strip is clearly homeomorphic to U × I.

2. The Hopf Fibration

One of the earliest example of a non-trivial �bre bundle was proposed by Heinz Hopf in 1931. The

Hopf �bration de�nes a �bre map p : S3 → S2 with �bres S1, represented as S1 ↪→ S3 p−→ S2. This
means that for every point b ∈ S2, p−1 (b) ∈ S3 is homeomorphic to S1. When we de�ne p later
on, we shall show that p−1 (b) turns out to be a great circle of S3.

We �rst note that S3 = {x, y, z, t ∈ R|x2 + y2 + z2 + t2 = 1} can be represented in C2 as S3 =
{(z1, z2) ∈ C2|z1z1 + z2z2 = 1}. Next, we introduce the complex projective line, which will be
crucial in developing the Hopf �bration.

De�nition 2.1. De�ne an equivalence relation ∼ on the set C2, such that (z1, z2) ∼ (w1, w2) if
(z1, z2) = c · (w1, w2) for some c ∈ C\ {0}. Then the complex projective line , denoted by CP1,
is the set of equivalence classes in C2\ {0}, with the classes being denoted [z1 : z2]. Speci�cally,
CP1 = {[z : 1] |z ∈ C} ∪ [1 : 0].

Observe that CP1 is really the set of equivalence class in S3 ⊆ C2, with antipodal points identi�ed.
The de�nition given is completely analogous to the de�nition of P 2, the real projective plane, as
the antipodal points of S2 identi�ed.

Notice that CP1 has a copy of C plus an addition point. This suggests the following proposition:

Proposition 2.2. CP1 is homeomorphic to Ĉ = C ∪ {∞}.

Proof. CP1 has the quotient topology with CP1 = S3/ ∼. We know from complex analysis that

Ĉ is homeomorphic to S2, also known as the Riemann sphere, via stereographic projection. An
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Figure 2.1. Stereographic projection, showing that Ĉ is homeomorphic to S2.

illustration of this is shown in Figure 2.1. Now consider the function f : S3 → S2, which maps
(z1, z2) ∈ S3 to the point in S2 corresponding to z1/z2 ∈ Ĉ. Once again, relying on results in
complex analysis, f is a continuous function, since it just takes one complex number and divides
it by another. Given that f is a continuous map from a compact space (S3) to a Hausdor� space
(S2), f must be a quotient map. But for (z1, z2), (w1, w2) ∈ S3, f (z1, z2) = f (w1, w2) if and only
if z1/z2 = w1/w2. But this implies that (z1, z2) = c (w1, w2), and therefore (z1, z2) ∼ (w1, w2).
Hence f is the quotient map which induces the equivalence relation ∼ on S3. We must therefore
conclude that S3/ ∼ is homeomorphic to S2, i.e. CP1 is homeomorphic to Ĉ. �

We are now ready to de�ne the �bre map p in the proposed �bre bundle S1 ↪→ S3 p−→ S2. This is
de�ned as the map p : S3 → CP1, p : (z1, z2) 7→ [z1 : z2], since CP1 is homeomorphic to C ∪ {∞}
and therefore to S2. Note that two points (z1, z2), (z′1, z

′
2) ∈ S3 have the same image under p if

and only if there exists λ such that z′1 = λz1 , z
′
2 = λz2. But this means that

1 = z′1z
′
1 + z′2z

′
2 = λλ (z1z1 + z2z2) = λλ

i.e. |λ| = 1. Thus, if p (z1, z2) = [z1 : z2], then p
−1 [z1 : z2] consists of all those points which are

obtained from (z1, z2) by multiplying each coordinate by eiθ, −π < θ ≤ π. This shows that the
pre-image of each point on S2 is a great circle on S3. Therefore, ∀b ∈ S2 , p−1 (b) is homeomorphic
to S1.

Now consider a covering of S2, consisting of S2 − [0 : 1] and S2 − [1 : 0]. Referring to Figure 2.1,

and noting that [0 : 1] corresponds to the point 0 ∈ Ĉ, i.e. 0 ∈ S2, and [1 : 0] corresponds to the

point ∞ ∈ Ĉ, we see immediately that S2 − [0 : 1] is really S2 − {0}, and S2 − [1 : 0] is equivalent
to R2. These two sets S2 − {0} and R2 therefore form an open covering of S2.

We will now give a homeomorphism ψ1 between (S2 − {0})× S1 and p−1 (S2 − {0}), as well as a
homeomorphism ψ2 between R2×S1 and p−1 (R2). De�ning µ ∈ S2 to correspond to the extended
complex number z1/z2, we de�ne
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ψ1 (µ, θ) =


(

eiθ√
1+ 1

|µ|2
, eiθ

µ
√

1+ 1

|µ|2

)
, µ 6=∞(

eiθ, 0
)
, µ =∞

and

ψ2 (µ, θ) =

 µeiθ√
1 + |µ|2

,
eiθ√

1 + |µ|2


It is a matter of complex analysis to determine that these two functions are indeed continuous,
bijective and with continuous inverse. Hence we have shown that for every point b ∈ S2, b admits
a neighbourhood U , such that p−1 (U), which can be made to be either a subset of p−1 (S2 − {0})
or p−1 (R2), is homeomorphic to U ×S1 through either of the homeomorphisms restricted to U . It
is also readily apparent that p ◦ ψ1 (µ, θ) = µ and p ◦ ψ2 (µ, θ) = µ over their respective allowed µ.

Therefore, we have successfully constructed the Hopf �bration, S1 ↪→ S3 p−→ S2.

3. A Very Brief Introduction to Quantum Mechanics

The Hopf �bration turns out to be fundamental to the consistency of quantum mechanics as a
theory. To understand this deep connection between topology and physics, we need to give a brief
overview of quantum mechanics.

Mechanics as a �eld in physics is really interested in the following question: given a set of particles
numbered i = 1, · · · , n, with known position and velocity vectors xi and ẋi at a given time t, how
can the position and velocity vectors of these same set of particles be predicted at some other time
t′? This fundamental question is answered classically by describing how particles interact with
each other, i.e. the forces between them, and how forces change the position and velocity vectors
of each particle over time.

For various reasons, classical mechanics was found to be unsuitable as a description of nature in
the microscopic limit. Instead, physics in the small scale turned out to be much less intuitive
than classical mechanics. Physicists were essentially forced to accept some odd things about the
true nature of reality in their attempts at formulating what has come to be known as quantum
mechanics.

Quantum mechanics describes physical systems by a mathematical object known as a state .
These objects do not actually contain concrete information, such as position and velocity vectors,
but rather tell us the various probabilities of observing all the physically possible results, if an
observation were to be made. Crucially, if no observation is made, then the system cannot be said to
be in any one state at all. This �uncertainty� is not simply a lack of information and understanding
of the system, but really is a fundamental property of nature. Once an actual observation is made
however, the state �collapses� into an actual physical state with known properties. The physical
state observed, and the probability of measuring such a physical state in the �rst place depends
entirely on the state.
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3. The Spin-1/2 System

One of the cleanest examples of how quantum mechanics works is the spin-1/2 system. Spin is a
vector that is a fundamental property of all particles in nature, much like mass, that a�ects how
a particle behaves in a magnetic �eld. In all the particles that form everyday varieties of matter,
the magnitude of this spin turns out to be 1/2.

When a spin-1/2 particle such as an electron is placed in a magnetic �eld, which is conventionally
directed along the z-axis, we can perform a measurement to determine the component of its spin
along the z-axis. When we do this, we �nd that there are only two possible outcomes. We can call
these two con�gurations spin-up and spin-down , denoted χ+ and χ−.

The state of this electron can be thought of as a �mixture� of χ+ and χ−. These two con�gurations
are mutually exclusive outcomes of the measurement, with some probability p+ and p− of occurring
respectively. This description immediately suggests the structure of a 2-dimensional vector space,
with χ+ and χ− forming an orthonormal basis, and the state of the electron being a vector ψ,
which is a linear combination of these basis elements.

For a quantum mechanical description of this system to make sense, we want to say that if two
electrons have the same value for p+ and p−, they are in the same quantum state, even though
they may in fact be in di�erent states, i.e. with di�erent mixtures of χ+ and χ−. This means
that there must be an exact correspondence between the mathematical objects in theory known
as quantum states and physical reality. Mathematically, we want to de�ne quantum states of an
electron as equivalence classes of states which yield the same physical results. This requires a
careful de�nition of what is a state vector, and which state vectors are equivalent.

To do so formally, we envision the state vectors as vectors in the Hilbert space C2.

De�nition 3.1. C2 is a Hilbert space , or an inner product space , over the �eld C, equipped
with an operator 〈 | 〉 : C2 × C2 → C known as an inner product , which satis�es the following
conditions:

(1) ∀ψ, ϕ ∈ C2, 〈ψ|ϕ〉 = 〈ϕ|ψ〉 (symmetry).
(2) ∀ψ, ϕ, ζ ∈ C2 and a, b ∈ C, 〈aψ + bϕ|ζ〉 = a 〈ψ|ζ〉 + b 〈ϕ|ζ〉, and 〈ψ|aϕ+ bζ〉 = a 〈ψ|ϕ〉 +

b 〈ψ|ζ〉 (bilinearity)
(3) ∀ψ ∈ C2, 〈ψ|ψ〉 ∈ R ⊆ C, and 〈ψ|ψ〉 ≥ 0, and 〈ψ|ψ〉 = 0 if and only if ψ = 0. (positive

de�niteness)

For two state vectors ψ = (ψ1, ψ2) and ϕ = (ϕ1, ϕ2), the inner product is given explicitly as

〈ψ|ϕ〉 = ψ1ϕ1 + ψ2ϕ2

In Rn, we can de�ne the length of a vector using the regular scalar product. We can do the same
in C2, with the concept of a norm.

De�nition 3.2. The norm of the inner product space C2 is the operator ‖‖ : C2 → R given by

‖ψ‖ =
√
〈ψ|ψ〉

∀ψ ∈ C2.

We are now ready to de�ne the state, and the equivalence of states, and show that this de�nition
is consistent with physical reality.
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De�nition 3.3. The state of an electron is de�ned as an element ψ ∈ S (C2), where S (C2) =
{ψ ∈ C2| ‖ψ‖ = 1}. This means that ψ = (ψ1, ψ2), with |ψ1|2 + |ψ2|2 = 1.

De�nition 3.4. Two states ψ, ϕ ∈ S (C2) are considered equivalent when ∃λ ∈ C, |λ| = 1, such
that ϕ = λψ. The quantum state of an electron is the equivalence class

[ψ] = {λϕ|λ ∈ C, |λ| = 1}

Now, for these de�nitions to be physically consistent, any two electrons in the same quantum state
should give similar outcomes when a certain measurement is made. Since any measurement of an
observable can lead to any one of many outcomes, what we really want is for the expectation

value of these measurements to be the same. Quantum theory dictates that the spin-1/2 system
with state ψ entirely determines this expectation value of an observable in the following way:

Proposition 3.5. Every observable has an associated linear operator Ŝ. The expectation value of

the observable, S, of a system in a particular state ψ is then given by

S =
〈
ψ
∣∣∣Ŝψ〉

For the case of the spin-1/2 system, the relevant observables are the components of the spin vector,
sx, sy and sz.

De�nition 3.6. The related linear operator of the measurement of the components of the spin
vectors in the x-, y- and z- directions are given by

Ŝx =

(
0 1
1 0

)
, Ŝy =

(
0 −i
i 0

)
, Ŝz =

(
1 0
0 −1

)
respectively. These matrices are known collectively as the Pauli matrices .

Example 3.7. We would do well with an example at this point. We will consider the measurement
of the spin vector along the z-axis of a electron with state

ψ =

(
1
0

)
The expectation value sz is then

sz =
〈
ψ
∣∣∣Ŝzψ〉

=

〈(
1
0

) ∣∣∣∣( 1 0
0 −1

)(
1
0

)〉
=

〈(
1
0

) ∣∣∣∣( 1
0

)〉
= 1

This means that we will always �nd the electron to be in the spin-up state! Clearly, the state
vector ψ represents an electron which is purely in this state. Earlier, we motivated the use of a
2-dimensional vector space to describe the state vector by saying that each state can be viewed as
a mixture of χ+ and χ−. Now, we have the natural identi�cation
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(
1
0

)
≡ χ+,

(
0
1

)
≡ χ−

We can therefore view ψ as a linear combination of χ+ and χ−, i.e. ψ = ψ1χ+ + ψ2χ−.

Example 3.8. Again, we have the state

ψ =

(
1
0

)
If we now make a measurement of the y-component of the spin, we get the expectation value

sy =
〈
ψ
∣∣∣Ŝyψ〉

=

〈(
1
0

) ∣∣∣∣( 0 −i
i 0

)(
1
0

)〉
=

〈(
1
0

) ∣∣∣∣( 0
i

)〉
= 0

An expectation value of zero suggests that we have the probability of �nding the spin in the y-
component to be spin-up or spin-down is equal. This shows that if we are in a state of de�nite
spin in the z-direction, the spin in the y-direction is completely inde�nite.

Thus, we hope to show two electrons in the same quantum state [ψ] has the same expectation
value for the spin vector s = sxx̂+ syŷ + sz ẑ. The total spin for the electron is 1/2, but in de�ning
the Pauli matrices this has been normalised to 1. We now show that the Hopf �bration indeed
guarantees that this is the case.

Theorem 3.9. There exists a one-to-one correspondence between quantum states and expectation

values of the spin vector.

Proof. States are de�ned on the space S (C2). This clearly is homeomorphic to the space S3. The
spin vectors also clearly correspond to points on the sphere S2. Now, consider the map f : S3 → S2

which maps f : ψ 7→ s (ψ). Then

f

(
ψ1

ψ2

)
=

〈
ψ
∣∣∣Ŝxψ〉 x̂+

〈
ψ
∣∣∣Ŝyψ〉 ŷ +

〈
ψ
∣∣∣Ŝzψ〉 ẑ

=

〈(
ψ1

ψ2

) ∣∣∣∣( ψ2

ψ1

)〉
x̂+

〈(
ψ1

ψ2

) ∣∣∣∣( −iψ2

iψ1

)〉
ŷ +

〈(
ψ1

ψ2

) ∣∣∣∣( ψ1

−ψ2

)〉
ẑ

=
(
ψ1ψ2 + ψ2ψ1

)
x̂+ i

(
ψ2ψ1 − ψ1ψ2

)
ŷ +

(
ψ1ψ1 − ψ2ψ2

)
ẑ

Now, points (ξ, η, ζ) on S2 corresponds to a point on Ĉ via the stereographic projection described
in Proposition 2.2.1 Denote this point by z = x+ iy. Then

1The map given below isn't precisely the stereographic projection in Figure 2: (ξ, η, ζ) gets sent to −y instead of

y if we use the map in Figure 2.1. But this does not change the fact that there is a one-to-one correspondence

between S2 and Ĉ.
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x =
ξ

1− ζ

=
ψ1ψ2 + ψ2ψ1

1− ψ1ψ1 + ψ2ψ2

=
ψ1ψ2 + ψ2ψ1

2ψ2ψ2

=
1

2

(
ψ1

ψ2

+
ψ1

ψ2

)
= Re

(
ψ1

ψ2

)

y = − η

1− ζ

= −
i
(
ψ2ψ1 − ψ1ψ2

)
1− ψ1ψ1 + ψ2ψ2

= −
i
(
ψ2ψ1 − ψ1ψ2

)
2ψ2ψ2

= − i
2

(
ψ1

ψ2

− ψ1

ψ2

)
= Im

(
ψ1

ψ2

)
Thus f : (ψ1, ψ2) 7→ ψ1/ψ2 when S2 is viewed as the extended complex plane is precisely the
quotient map f : S3 → S2 de�ned in Proposition 2.2. But note that f is completely equivalent
to the map p : S3 → CP1, p : (z1, z2) → [z1 : z2], since CP1 is the quotient space of S3 with
(z1, z2) ∼ (w1, w2) if and only if (z1, z2) = c (w1, w2), which is true if and only if z1/z2 = w1/w2.
Hence there is a one to one correspondence between ψ1/ψ2 and [ψ1 : ψ2] in CP1. Hence the map

f : ψ 7→ s (ψ) is the �bre map p of the Hopf �bration S1 ↪→ S3 p−→ S2. As we noted earlier, two
points ψ, ϕ ∈ S3 have the same image under f if and only if ψ = λϕ, where |λ| = 1. But this is
precisely the same as saying that ψ, ϕ have the same image when they are in the same equivalence
class [ψ], i.e. they represent the same quantum state. This establishes a one-to-one correspondence
between quantum states on S3 and expectation value of the spin vector in S2, as required. �

4. Conclusion

The result obtained in this paper is signi�cant, as it establishes a link between the abstraction of
quantum theory and physical reality, which quantum theory was ultimately designed to describe.
We have, however, only shown this link for the spin-1/2 system. This system, also known as a qubit ,
is the simplest system within the quantum theoretical framework. Higher dimensional analogues of
this system exist, and a particularly important example is the two-qubit, a system which exhibits
entanglement .

The phenomenon of entanglement describes a correlation between the states of two particles.
Simply put, in a pair of entangled particles, measuring the state of one particle (which causes the
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state vector to collapse) instantly determines the state of the other. This would happen even if

these two particles were light-years apart, with no possibility of interaction. This is a profoundly
counter-intuitive behaviour that has actually been experimentally observed.

It turns out that a higher dimensional generalisation of the Hopf �bration, which produces the �bre

bundle S3 ↪→ S7 p−→ S4, provides the link between quantum mechanical theory and the physical
reality of the two-qubit. Evidently, the Hopf �bration is crucial to our understanding of these
systems.

It is somewhat surprising that such an abstract concept in algebraic topology can have such an
unexpected and profound impact on physical reality. But this is not an isolated case: physical
theory is intricately tied to results from all �elds of mathematics. This ability of mathematics
to even begin to describe the real world has often been viewed by physicists as wondrous and
inexplicable. If so, then the Hopf �bration is a marvellous glimpse at a miracle of nature.
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