arXiv:0908.1205v1 [math.HO] 9 Aug 2009

A YOUNG PERSON’S GUIDE TO THE HOPF
FIBRATION

ZACHARY TREISMAN

The purpose of these notes is to introduce a mathematical structure
which goes by the name the Hopf fibration, and demonstrates a number
of surprising and beautiful things. The Hopf fibration is a map showing
a connection between two spheres, a two dimensional sphere, and a
three dimensional sphere. In order to understand this map, we will
need to develop a few tools. There will be a few detours along the
way, in order to develop enough familiarity with the tools being used
so that the student is sufficiently impressed by the structures that are
eventually uncovered.

The Hopf fibration and the mathematics that are developed along
the way makes for some very interesting visual images. The paintings
that have been included here are all the work of Lun-Yi Tsai, an artist,
a mathematician, and a good friend. The computer generated images I

FIGURE 1. Hopf Fibration
Lun-Yi Tsai
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have produced using the programs surf and jenn3d, both of which are
freely available online, as well as Mathematica.

1. CoMPLEX NUMBERS

Our first task is to introduce you to the complex numbers. The in-
troduction is geometric, and appeals to the intuitive basis for the real
numbers as measurements that scale. One thing that this development
is not is historical. This is because the first ways of thinking of some-
thing are not always the easiest to understand. In this section you are
often asked to show algebraic facts by drawing a picture. Not only
is this rather unusual, it is rather subtle, but it can be done with all
the rigor of a traditional development. The main idea is to see intu-
itively what these basic properties look like, as pictures, and to become
comfortable with complex numbers.

1.1. Fields. The real numbers (R for short) are familarly represented
on a number line, marked by important examples of real numbers, such
as zero, one, and so on. To add two numbers on the number line, we
need to know where zero is. Then we define the sum a + b as the point
on the line that comes from stacking the two lengths next to each other.

Exercise 1.1. Draw a picture of 2 + 3 = 5.

To multiply two numbers graphically, we need to know where zero
is, and where one is as well. Then we can define the product ab as the
number that b reaches when the line is scaled so that 1 is at a.

Exercise 1.2. Draw a picture of 2 x 3 = 6.

Frequently, a number system is abstractly defined using a set of
axioms, or rules. An undergraduate analysis course might present the
real numbers as the only complete ordered field.

The following nine axioms define a mathematical structure called a
field. Familar examples are R and the rational numbers (Q for short) .

(1) (commutativity of addition) a+b="b+ a

(2) (associativity of addition) a+ (b+c¢) = (a+b)+c¢

(3) (additive identity) There is a number 0 such that a + 0 =a

(4) (additive inverses) There is a unique number —a such that
a+(—a)=0

(5) (commutativity of multiplication) ab = ba
(6) (associativity of multiplication) a(bc) = (ab)c
(7) (multiplicative identity) There is a number 1 such that la = a
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(8) (multiplicative inverses) There is a unique number 1/a such
that a(1/a) =1

(9) (distributive law) a(b+ ¢) = ab + ac

Note that the integers are not a field, because there are no multi-
plicative inverses: 1/2 is not an integer.

The two adjectives that distinguish the real numbers from the other
fields are complete, meaning that there aren’t any missing real numbers,
unlike how v/2 is missing from the rationals, and ordered, menaing that
the symbols < and > are meaningful for R; if a and b are distinct real
numbers, then either a < b or a > b.

We are more interested in the algebraic properties of the complex
numbers, so we won’t bother with the technical details of completeness
and order.

Exercise 1.3. Draw pictures of field axioms (1)-(9) for R.

1.2. Complex arithmetic. We will describe the complex numbers (C
for short) geometrically, by defining a way to add or multiply points
on a plane. The procedure is similar to, and is in fact an extension of,
the procedure for real numbers. To add two points on the plane, we
need to fix a point, which we’ll call zero. Once we have zero, we add
complex numbers by stacking them next to each other. But now the
direction is important! The procedure is the same as vector additon.
If a and b are points on the plane, thought of as complex numbers,
and you draw arrows from 0 to a and 0 to b, then a + b is the number
that you get by moving the arrow from 0 to b so that the tail is at the
head of the arrow for a. If you do the same for b+ a, you should get a
parallelogram with vertices at 0, a, b, and a + b.

Exercise 1.4 (Properties of Addition). The letters a, b, and ¢ stand for
complex numbers. Show by picture that this rule for addition satisfies
the properties of addition in the field axioms.

(1) Show that there is a number —a such that a+ (—a) = 0. (Iden-
tity)

(2) Show that a + b = b+ a. (Commutativity)

(3) Show that (a +b) + ¢ =a+ (b+ ¢). (Associativity)

Draw a horizontal line through 0, and choose a point to the right
of 0 to call 1. Notice that by repeatedly adding or subtracting 1 this
gives us all of the integers as equally spaced points along a horizontal
line in the complex number plane. If we draw in the line connecting
these dots, it corresponds to the real number line.
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We know what it looks like to multiply real numbers, so we want to
extend this idea that already works for the line to the whole plane. This
means that to find ab, while keeping 0 fixed, we stretch the geometric
thing that underlies the number system so that 1 is at a and look at
where b goes. Another way to say this is that you take the triangle
with corners at 0, 1, and b, and you draw a similar triangle (one with
the same angles in the same order) with the side similar to the one
between 0 and 1 running between 0 and a.

Exercise 1.5 (Properties of Multiplication). The letters a, b, and ¢
stand for complex numbers.
(1) Show that there is a number 1/a such that a(1/a) = 1. (Iden-
tity)
(2) Show that ab = ba. (Commutativity)
(3) Show that (ab)c = a(bc). (Associativity)
(4) Show that the complex numbers have the distributive property,
a(b+c¢) = ab+ ac.

Complex numbers do a lot algebraically that the real numbers can’t
do. The most important thing about complex numbers is that negative
numbers can have square roots!

Exercise 1.6. (1) Draw a circle around 0 that passes through 1.
The number that is one quarter of the way around the circle,
dierctly above 0 (on the perpendicular to the real line) is called
i. What happens when you multiply 7 by itself? (What is i??)

(2) If you multiply any two numbers on this unit circle, what can
you say about the result?

(3) In any number system, 13 = 1. In the complex numbers, can
you find a number other than 1 that when you take the third
power you get 17 Can you find another one? They are on the
unit circle.

(4) How about fourth roots of 17 (Hint: You already found one of
them.)

(5) By now, maybe you can guess how to find n different solutions
to the equation 2™ = 1 for any positive integer n.

1.3. Cartesian and polar forms. This number ¢ is very special. Lots
of times, complex numbers are written in the form
z=T+ .

Here, x and y are real numbers. Starting from 0, x tells us how far to
go out horizontally, and y tells us how far up to go vertically to find z
on the plane. That is, z is the point with Cartesian coordinates (z,y)
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if our coordiantes on the plane put the origin at 0, (1,0) at 1, and (0, 1)
at ¢. If y = 0, then z is a real number. All of the surprising algebraic
properties of C come from this ¢, this square root of —1. Historically,
taking square roots of negative numbers was rather hard to swallow, so
1 or any multiple are called imaginary numbers. Thus, we call z and y
the real and imaginary parts of z, respectively, and often write Rz = x
and Sz = y.

Exercise 1.7. (1) Draw the points 1 + 2i, 1 — 21, 1—%
(2) If z = x + iy, what is —z7
We can use this representation and the distributive law to multiply
complex numbers.
(z +iy) (s +it) = xs + iys + izt + iyt = (vs — yt) + i(ys + xt)

To divide complex numbers, observe that

2z = (x+1y)(x —1iy)

R N

= |2
So zz/|z]* = 1, or in other words z/|z|> = 1/z, and if we want to
compute z/w = (z +iy)/(s +it), we can do this by computing

zw (x+iay)(s—it)  (ws+yt) +i(ys — at) |

w2 s2 4 t2 52 4+ t2

\2
Exercise 1.8. (1) Calculate <ﬁ> , (T4 24)(1 — 24).

' V2
(2) Calculate 7.

(3) Find the z and y for the cube roots of 1 that you found above.

The field of complex numbers is complete, but that isn’t terribly
important for us at this point. It is important to realize, however, that
the complex numbers are not ordered. Which is greater, 1 or 7 The
question has no answer. The best we can do to compare two complex
numbers is to give the absolute value, also called the norm or modulus
or magnitude. This is the distance from 0. Just like for real numbers,
the absolute value is denoted with vertical bars, and as it should, the
complex notion of absolute value coincides with the real notion for
real numbers inside the complex plane. The absolute value can be
calculated using the Pythagorean theorem if our number is written as
z=z+iy: |z| = 22+ 9>

There is another way to specify a point of the plane using coor-
dinates. Polar coordinates specify a point by giving the angle off the
horizontal axis, sometimes called the argument and written arg(z), and



6 ZACHARY TREISMAN

the magnitude. For a complex number, this representation is very use-
ful, especially when multiplying complex numbers.

Exercise 1.9. If z = (r,0) and w = (s,v), what is zw in polar coor-
dinates?

The conversion between Cartesian (z = = + iy) and polar z = (r,6)
is straightforward. To go from polar to Cartesian

r=rcosf, y=rsinb,

and to go from Cartesian to polar

r=lzl =+va2+y? tanf =y/z.

So we can write any complex number as z = rcosf + irsinf. If we
factor out the r, we have cosf + isinf. Maybe you have seen expo-
nentials and power series representations of functions. If you haven’t,
just think of the following as a convenient notation, and a reason to
be interested in learning about these things when they come up. The
power series expansions of sine and cosine are:

: 3 5 7
Sln(t) = t_g_'?—i_g_l_g_l—i_”'

4 6

cos(t) = 1—-5L+5-5L+.--.
and the power series expansion of the exponential is

. t2 t3 4 5

e :1+t+5+§+z+a+"'-

Above, you found that i is a 4th root of 1. In particular: i® = 1, i' =4,
i? = —1, i® = —i, i* = 1, and then i® = i and the pattern repeats. So
if we write down the power series for e we get something interesting:

¢ = 14if+ G0 4 GO GNP

= 14— 8 il Ol
= cosf +isind.

So we can write a complex number in polar coordinates as:

z=rev.
Famously, this expression gives rise to the equation e + 1 = 0.
Exercise 1.10. (1) Convert a = %(1—1—2’) and b = 144v/3 to polar

coordinates and compute the product ab.
(2) What are the n'* roots of 1 in polar coordinates?

When we defined i, we made an arbitrary choice. If we had instead
chosen the number one quarter of the way around the unit circle from
one in the clockwise direction, we would have also found a number
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that squares to —1. In algebraic terms, this is reflected in the fact
that (—i)? = —1. The arbitrariness of this choice is reflected in a very
important symmetry of the complex plane, called complex conjugation.
If 2z = x + iy then write Z = x — 1y, and call zZ the complex conjugate
of z.

1.4. Complex algebra. Strictly speaking, this next part of the course
isn’t needed to understand the Hopf fibration, but I would feel deficient
if I introduced the complex numbers and didn’t talk about these fol-
lowing ideas.

Complex numbers give us the abilily to solve algebraic equations.
The n'" roots of 1 are the solutions to the equation " = 1. If our
variable x can take complex values, then we can find n roots for any
polynomial of degree n. This result is so important that it gets a name
signifying how powerful it is.

Theorem 1.11 (The Fundamental Theorem of Algebra). Any polyno-
mial of degree n with coefficients in R (or even C) can be factored into
linear terms.

Proving this theorem rigorously would take us too far afield for now.
There are many different ways that it can be proved. Perhaps later
in your mathematical development, you will get to decide which ones
are your favorites. Some parts of my favorite proof will be described
below.

Exercise 1.12. (1) Find the roots of 22 4+ 4z + 3 = 0.

(2) Show that if p(z) is a quadratic polynomial with real coefficients
and z; is a root, then Zz; is also a root.

(3) Graph the parabola defined by y = 2 + 4z + 5 in the plane
R2. Revise the description of the three types of parabolas that
relies on the discriminant in the quadratic formula to one based
on complex numbers.

(4) Find the roots of 2% — 32% + 42 — 2.

1.5. Functions of a complex variable. Perhaps the most important
things to study about a number system are the functions. Most of the
functions of a real variable that you are familiar with also make sense
when the input and output are thought of as complex. For example,
the function f(z) = 2% makes perfect sense for x a complex number.
There are actually a lot of very significant differences in the theory
of functions of a real variable and the theory of functions of a complex
variable, but the one that we’ll pay the most attention to is the simple
fact that because C is a two dimensional space when viewed with our
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“real eyes” the notion of drawing a graph of a function, as we do
with f(z) = 2? when we draw a pair of axes and a parabola passing
through the point where they cross, is simply impossible in a three
dimensional space. We would need two dimensions for the input, and
two dimensions for the output, for a total of four.

All is not lost, however, and we can graphically visualize complex
functions by the ways that they transform shapes drawn on the plane.
For example, multiplying by a complex number z rotates by arg(z)
and scales by |z|, and complex conjugation reflects in the real axis. For
more complicated functions, we can develop an visual understanding
by looking at how a grid is transformed.

Exercise 1.13. This exercise shows how the square grid is transformed
by the function f(z) = 22

(1) Find the real and imaginary parts of 22 if z = x + 7y.

(2) If w = u + iv = 22, describe the shape in the w-plane that is
the image of the square with sides defined by the lines z = 0,
r=1y=0and y =1.

(3) Do the same for the similar squares in the second third and
fourth quadrants.

(4) Do the same for the similar squares of twice the side length and
half the side length in the first in the first quadrant.

(5) Describe the action of the function z + 2z2. Include in this
description some reference to why the graph in R? of z +— 2?2
looks the way it does.

(6) Now look at z + 23, and describe the transformation caused
by this function.

(7) How about z — z(z — 2)?

We now introduce an important tool in the study of complex func-
tions.

Definition 1.14. A path in C is a continuous map C : [0,1] — C. A
path is called closed if C'(0) = C(1).

Definition 1.15. The winding number of a closed path C' is defined
as the number of times the path moves around 0 counter-clockwise.

If f: C — Cis a continuous function, we can learn a lot about it by
looking at the winding numbers of various paths f~1(C), where C is a
closed path.

Exercise 1.16. Let C be the path tracing out the unit circle: C(t) =
e?™® and let K be the path tracing out a circle of radius one around
the number 2: K(t) = ¢*™ + 2.
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(1) What are the winding numbers of C' and K7

(2) If f(2) = 2%, what are the winding numbers of f~!(C') and
fTHE)?

(3) What if f(z) = 2"7

(4) f(z) = 2(z = 2)7

What these examples are getting at is the fact that the winding
number can be used to detect zeros of a complex function. This can
be used to prove the Fundamental Theorem of Algebra in the following
way. For z with |z| >> 0, any polynomial of degree n looks enough
like 2™ that a circle with this large radius will have winding number n,
so there are n zeros inside the circle. Making this precise requires some
careful work, so that’s all we’ll say in that direction.
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2. SPHERES

You might think of the sphere as the set of points defined by the
equation
o+ a5+ a5 =1
This defines a surface in space, consisting of those points at distance
one from the origin.
Similarly, you might think of a circle as the solutions to the equation

2 2
$1—|-£L‘2:1,

as this defines a curve on the plane, consisting of those points at dis-
tance one from the origin.
What about the solutions to the even simpler equation

7 =1,
or the more complicated
i+ oi+ 2+ =17

It makes sense to mathematicians to call all of these objects spheres.
The dimension of a sphere is the number of parameters required to
specify a point. So we say that the circle is a one dimensional sphere,
or one sphere for short, or S! for even shorter, that the surface of the
earth is a two sphere, or S? (approximately - the Earth isn’t exactly
round, but it is pretty close), and by analogy, the set of points in four
dimensional space satisfying the equation 2% + 25 + 22 + 23 = 1 is a
three dimensional sphere or S®.

2.1. Dimension. “Wait a minute!” you might say, “Four dimensional
space, how the heck am I supposed to imagine that?!” Or, maybe
you have thought about it a bit, and have a few ideas. Anticipating
this, one mathematician I know will occasionally begin a talk about
dimensions with the rhetorical question, “So, is the fourth dimension
time, or what?”

To a mathematician, this question need not be any more meaningful
than the reply, “No, the second dimension is time, the fourth dimen-
sion is red.” Mathematically, a dimension is something that can be
measured, something that can take a value. It is a characteristic of
an object that in some rough way, describes its complexity. A phrase
in common usage that aligns closely to the mathematician’s notion of
dimension is, “that adds a new dimension to the situation.”

A circle is a relatively simple object in that a single number, for
example the angle measured counterclockwise from a fixed point, is
enough to fully specify any point on the circle. One measurement
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locates a point on the circle, and we call it a one dimensional object.
On the other hand, the weather is a very high dimensional system. It
is true that the temperature in Seattle today, the time of year, what
the winds and clouds are like over the Olympic peninsula, and what
the weather will be like tomorrow are all related, but the relationship
is very complex and depends on a large nuimber of variables. So when
a meteorologist makes a prediction of the weather based on all the
information at hand, she is using some sort of model of the weather
that takes all of these measurements into account. We say that this
model is a high dimensional model.

For objects with a small number of dimensions, it can be helpful to
use our familarity with R3, coming from the fact that our surroundings
look very much like this object, to visualize these spaces. It turns out
that there are many three dimensional objects that we are able to “see”
with a little bit of imagination and effort.

Four dimensions are not too hard to visualize. We can think of time
as a fourth dimension; a solid four dimensional thing is something that
exists for some span of time as a solid three dimensional thing. But
there is no need to insist on using time. Another popular choice is
color.

Exercise 2.1. Using color as a fourth dimension, explain why you
can’t tie a knot in a piece of string in a four dimensional space.

However, directly visualizing things in four dimensions is generally
only good enough to let us see topological facts. If we try to visualize
the difference between a nice round three dimensional sphere in R*
and some topologically identical distortions that are not so round, it
can be less than straightforward. Therefore, instead of trying to build
a globe of the three sphere, we can make a map. This map will be
drawn on a three dimensional Fuclidean space, just as a map of the
two dimensional sphere such as the earth is drawn on a two dimensional
Euclidean space such as a piece of paper. But before we even talk about
the three dimensional sphere at all, we will look at some properties of
the lower dimensional spheres, so that we will know what to look for.

2.2. 5% the zero sphere. A zero dimensional sphere is a pair of
points. There are two solutions to the equation z? = 1, namely z; = 1
or r1 = —1. So we can write S® = {—1,1}. There isn’t much more
to it than that. It is the only sphere that is disconnected, in that the
two points are separated by some distance, but other than that, it isn’t
terribly interesting. On the other hand, it shows up in its proper place
whenever we need it to.
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2.3. S': the circle. A one dimensional sphere is a circle, the set of
points in the plane equidistant from a fixed center, or the solutions to
the equation z? + x2 = 1. There are a couple of special ways in which
it comes up that are worth mentioning.

The complex numbers z with |z| = 1 are called the unit complex
numbers or if it is understoood that we are talking about complex
numbers, just the units. The units form a circle of radius one. One
crucial feature of the units is that the product of two units is again
a unit. Just as numbers as measurement of distances or lengths are
represented graphically as the line, we can use the circle to represent
numbers as measurements of rotations. In polar coordinates on C, any
point on the circle can be written z = €. It is often handy to have
such a compact notation.

2.3.1. Topology. When you “circle back around to have another look,”
or lament that you are “moving in circles,” it is not that you mean to
say that you have traced an arc of points equidistant from a central
point, but rather that your path has carried you back to your starting
point. To a topologist (which is a special type of mathematician, quite
similar to a geometer), the roundness of a circle (or other spheres for
that matter) is not intrinsic. In the idiom of topology, it makes sense
to take an extension cord, plug one end into the other, and call it S*,
even if it is not even close to being shaped into a circle. Topology
looks at properties of geometric things that are intrinsic in a way that
the particular shape it happens to take is not. Since the extension
cord plugged into itself could be arranged into a perfect circle without
cutting it up and rearranging it (we might have to untie some knots
by unplugging it, untying the knot, and plugging it back together, but
since it gets put back together exactly the way it was before, that’s
okay), it is in a topological sense, the same as a circle.

2.3.2. The projective line. Thinking topologically about the circle al-
lows us to see it as another interesting geometric object. The real
projective line is the set of lines through the origin in the plane. Since
each line is designated by it’s slope, this is also the set of ratios [z : y],
where x and y real numbers. (We say that a vertical line has infinite
slope; it corresponds to the ratio [0 : 1].) We write P for the projective
line.

If we think of the unit circle in the plane, each line through the
origin makes a diameter of that circle. So in particular, if we take the
upper semicircle {(x,y)|z? +y* = 1,y > 0}, there is one point on the
semicircle for each line, except for the two points (1,0) and (—1,0),
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which both correspond to the same line: the z-axis. So if we identify
these two points, as if the semicircle is an extension cord and we plug
the ends together, we get a circle, topologically.

We can also represent (most of) the projective line as a straight line.
If we draw the line x = 1 in the plane, each line intersects this line at
the point where y equals it’s slope. The vertical line is missing from
this representation, but it is the only one, so we can say that this line
xr = 1 gets an extra point, called the point at infinity, and that the
projective line is thus R plus one more point, called oo.

That the projective line is circle can also be seen via an operation
called stereographic projection, which is an important way to visualize
spheres that works in all dimensions. Stereographic projection gives a
way to map an n-dimensional sphere on an n-dimensional Fuclidean
space. Consider the configuartion already studied, with the line z = 1
giving a map of Pg, and now draw a circle with diameter the unit
interval on the z-axis. For any point p on the circle, other than the
origin, the line through the origin and p hits both the circle and the
line x = 1 at exactly one point. So the circle is the projective line; oo,
or [0 : 1], is the origin, and the remainder of the points p = (p;, p2) on
the circle are represented by the ratio [p; : po], or the point (1, ps/p)
on the line z = 1.

2.3.3. Projective transformations. One of the fundamental features of
any geometric object that can help us to understand it are the trans-
formations that can be used to move it around without fundamentally
changing what it is. The projective line P is the collection of lines
through the origin in R?, so any transformation of R? that sends lines
through the origin to lines through the origin is also a transformation
of the projective line. In other words, any linear transformation of the
plane with nonzero determinant gives rise to a transformation of the
projective line. These transformations correspond to choosing various
different lines in the plane to project onto.

Exercise 2.2. None of the following characteristics are preserved by
projective transformations of the line. Give examples to show this.

(1) Any particular point: there is no “origin” of the projective line.
(2) The distance between two points.
(3) A point being between two other points.

There is a quantity that is preserved if we consider four points on
Pg. This is called the cross ratio. If a, b, ¢, and d are any four distinct
points on P}, choose coordinates (by choosing a line to project onto
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and a scale to use on that line) and define the cross ratio as the fraction

(a—c)(b—d)
(a—d)(b—c)

This is unchanged if we apply a transformation 7.

(a,b;¢,d) =

Exercise 2.3. A projective transformation 7" can be represented com-
putationally by the matrix of a corresponding linear transformation of
R2. Show that such a 7" does not change the cross ratio.

Exercise 2.4. The permutation group S; acts on the cross ratio by
reordering a, b, ¢, and d. However, for a fixed a, b, ¢, and d, there are
only six different values that the cross ratio can take. Suppose that
(a,b;c,d) = .
(1) Which permutations of a, b, ¢, and d leave the value \ invariant?
(2) For permutations that do change the value of A\, what are the
resulting values?

2.4. S%: the skin of the globe. A two dimensional sphere is what
most people think of when they think of a sphere. It is the surface of
a ball or a globe. Its geometry is quite rich, and by exploring some
aspects of it with analogs in higher dimensions, we will be prepared to
understand the structure of S® via analogies with S2.

Definition 2.5. A great circle is a circle on the sphere that is as long
as possible. Great circles are the intersections of planes through the
center of the sphere with the sphere. The shortest distance between
two points on the surface of the sphere is along a great circle.

Exercise 2.6. (1) Consider the triangle on the unit sphere z3 +
73 + 22 = 1 made by the intersection of the coordinate planes
x; =0, ¢ =1...3 with the sphere in the orthant where all
the coordinates are non negative (x; > 0, ¢ = 1...3. What
are the angles of this triangle? What is its area? (The surface
area of a sphere with radius r is 4772.)
(2) Find the area of a spherical triangle with angles «, 3, and v on
the unit sphere.

2.4.1. The Riemann sphere and stereographic projection. Like the cir-
cle, S? also represents a projective line, but it is a projective line for the
complex numbers. In this guise, it is also called the Riemann Sphere.
Analogous to P}, the complex projective line P{. is defined by ratios of
complex numbers [z; : 23], and if z; # 0, this can be thought of as the
“slope” z3/z1, though how exactly this is a slope is hard to visualize,
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since C? is four dimensional as a real space. There is again a point
which we call co, corresponding to the ratio [0 : z5].

Stereographic projection gives us a way to see P{ as S?. Since any
point [ : zo] € Pg other than oo can also be represented by [1 : 2], we
can define z = x +iy = z—;, and put this plane into R? with coordinates
(x,y,t). Now put a sphere into this R? so that the unit interval on the
t-axis is a diameter (so the center of the sphere is (0,0, 1/2), and it has
radius 1/2). We can project from the point (0,0,1): for every point
p on the sphere except (0,0, 1), draw the line through p and (0,0, 1).
This line hits the sphere at these two points, and it hits the plane ¢ = 0
exactly once.

Exercise 2.7. (1) Show that the line between (p1, pa, p3) and (0,0, 1)
also passes through (ﬁ, 1fﬁ,O). So a formula for stereo-
graphic projection from the sphere to the plane is given by

y4! D2
o(p1,p2,p3) = ( ) :

1—ps'1—p;s

(2) Show that the inverse map from the plane to the sphere z* +
y> + (t — 1/2)* = 1/4 is defined by

-1 x Yy 2 +y°
0’(96,3/):(2 L I LY )
rH+y+1 2ty +1 22 +y*+ 1

(3) Write these formulas for o and ¢~! in terms of complex num-
bers.

(4) There is no particular need to use the sphere x?+y?+(t—1/2)? =
1/4. In fact, show that the formula for o found in part (1) also
defines stereographic projection from the sphere 22 +y? 4+t = 1
to the plane t = 0. Show that if we want to invert stereographic

projection from the plane back onto the unit sphere, that we
use the formula

o N (w,y) = (

Via stereographic projection we can match each point on the sphere
with a complex number, except for (0,0,1). So we define ¢(0,0,1) =
00.

2z 2y 24+ -1
?+y?+ U2+ + U a?+y2+ 1)

Exercise 2.8. (1) What points on the sphere correspond to the
unit complex numbers?
(2) Consider the transformation z +— iz. Describe the transforma-
tion of the sphere that this corresponds to.
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(3) Consider the transformation z — 2z. Describe the transforma-
tion of the sphere that this corresponds to.

(4) Consider the transformation z — 1/z. What transformation of
the sphere does this correspond to?

(5) Describe the sequence of points

1 1 1 . 2 3

{..., A 7 T 1+i,1,1+@,(1+2) ,(1+14) ,}
on the sphere. There is an Escher print illustrating this sort of
transformation.

(6) Find the coordinates in R? for a regular octahedron sitting in-
side the sphere with vertices at o7*(0), o=!(1), and o~!(c0).
Where are the rest of the vertices when projected to the plane?
If you connect the vertices with great circles on the surface of
the sphere, what do these great circles map to via stereographic
projection?

(7) Instead of an octahedron, put a cube inside the sphere with its
faces parallel to the coordinate planes. What are the complex
numbers corresponding to the vertices of the cube? If the ver-
tices of the cube are connected with arcs of great circles instead
of straight lines, what do the projections of these great circle
edges of the cube look like?

What if the cube was sitting with vertices at o¢~!(0) and
071(00), and two more of its vertices along the circle corre-
sponding to the real axis. Where are the rest of the vertices,
and where are the great circle edges?

2.4.2. Mobius transformations. There is a lot of interesting geometry
to the complex numbers and the Riemann sphere that have to do with
linear fractional transformations, also called Maobius transformations.
These are functions of the form

_az+b

fz) = cz+d

where a, b, c and d are complex numbers. Mdobius transformations nat-
urally act on the Riemann sphere; even when cz + d = 0, we would
like to have a value for f(z), and it makes sense to set this value as
oo. Conversely, if we compute f(z) for values of z with |z| growing
larger and larger, the value of f(z) approaches a/b. So we can set

f(o0) =a/b.

Exercise 2.9. Show that a Md&bius transformation f(z) =
determined by the values of any three points in two steps:

az+b

cz+d 18
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(1) Show that for any three distinct inputs, zi, 29,23 € C there
is a unique Md6bius transformation h(z) such that h(z;) = 0,
h(z) =1 and h(z3) = oo.
(2) Show that for any three distinct values, wy, wq, w3 € C there
is a unique Mobius transformation g(z) such that ¢g(0) = wy,
g9(1) = wy and g(00) = w;.
So by setting f(z) = g(h(z)), we get a unique M&bius transformation
with f(21) = w1, f(22) = wy and f(z3) = ws.

Exercise 2.10. Since the definition of the cross ratio as an invariant of
the projective line didn’t really rely on the fact that we were thinking
about Pg, it is also an invariant of P}L. Show that if zq, 29, 23, and
z4 are distinct complex numbers, and f(z) is a Mébius transformation
with f(21) =0, f(22) = 1 and f(23) = oo, then f(z4) = (21, 22; 23, 24)

One of the important things about Mobius transformations is that
they can be composed by matrix multiplication. A Mobius transfor-

mation ;
az +

can be encoded in the matrix

a b
My = ( o ) |
Exercise 2.11. Show that if

a1z + by asz + by
= — d =
hz) c1z+di’ and  f>(z) coz +dy’

then the composition fi(f2(2)) is given by the matrix My, My, .

2.4.3. Sphere inversion. Sphere inversion is a way of turning space in-
side out, so that the inside of a sphere is sent to the outside, and
vice versa. It will help us to understand the geometry of stereographic
projection.

Sphere inversion is defined for spheres of any dimension.

Definition 2.12. T'wo points p and ¢ are said to be inverse with respect
to a sphere S with center a and radius r if the following conditions are
satisfied:

e p, q and a are colinear, and a is not between p and gq.
o |ap|lag| =

This is enough to completely specify ¢ given p, so for any sphere
S there is a transformation ig that takes each point p to its inversion
in S. Note that the definition is symmetric, in that p and ¢ can be
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FIGURE 2. A construction of inverse points

interchanged, so is(p) = ¢ means than also ig(q) = p. The only caveat
is that i5(a) is not defined. To remedy this, we can add a point at
infinity, and say that ig(a) = oo. This is reminiscent of stereographic
projection, and for good reason, as we will see.

Exercise 2.13. Show that in the configuration of figure [2| the points
x and y are inverse. The figure represents the following construction:
to invert a point x which lies inside a circle C' with center a, draw a
line [ through z which is perpendicular to the line m containing x and
a. Line [ will meet C' at two points, call them p; and py. Draw lines t;
and to, tangent to C' at p; and po, respectively. The intersection point
y of t; and t5 lies on m, by symmetry, and we say that y is inverse to x
with respect to C'. This construction can easily be reversed for a point
outside of C, given y, draw t; and t5, connect them with line [, and the
inverse point x is the intersection of [ and m, m being drawn in this
case by connecting y to a.

One of the most important properties of inversion is that the inver-
sion of a sphere is a sphere. That is, if K is a sphere of any dimension
up to and including the dimension of S, then ig(K) is also a sphere.
The only caveat here is that if K passes through the center of S, then
ig(K) is a plane, which we can think of as a sphere containing co.

Exercise 2.14. This exercise shows that the inversion in R? of a circle
is or a line is a circle or a line. (Circles passing through the center of
the inverting circle are sent to lines, and vice versa.) There are a few
cases to check. Most of them rely on the so called Carpenter’s angle
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ql

FIGURE 3. In this configuration p is inverse to p’ and ¢
is inverse to ¢'.

FIGURE 4. a €/

theorem: a triangle inscribed a circle such that one side is a diameter,
is a right triangle with the diameter as hypotenuse.

In what follows, C'is a circle with center a, shown as the darker circle
in the figures.

(1) Show that in the configuration of figure [3| Zagp = Zap'q’ and
Zapg = Zaq'p'.
(2) If £ is a line passing through a as in figure[d] show that i (¢) = ¢.
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FIGURE 5. a &/

(3) If £ is a line which does not pass through a, use figure |5/ to show
that the inverse I(¢) is a circle containing a.

(4) If a is inside a circle K, use figure [0] to show that ic(K) is a
circle.

(5) If a is outside a circle K, use figure (7| to show that ic(K) is a
circle.

We can also explicitly write down the formula for inversion of a point
z in a circle C' with center a.

z'c(z):a+( L )Q(Z—a)

|2 = al

Note that this formula is not particular to any dimension, it works for
all spheres, not just circles.
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. 7
W d2

FIGURE 6. «a inside K

FIGURE 7. a outside K

Exercise 2.15. (1) Rewrite the formula for i¢(z) in terms of com-
plex conjugation.
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(2) Compose two inversions, that is, take ic(ix(z)). Show that this
is a Mobius transformation.

One of the most important features of stereographic projection is
that circles on the sphere correspond to circles on the plane, with the
exception that circles on the sphere that pass through the point of
projection (generally (0,0,1) in these notes) correspond to straight
lines in the plane.

Exercise 2.16. Find a sphere R such that ip agrees with ¢ when
restricted to the sphere.

The existence of this way to do stereographic projection allows us to
prove one of the most important facts about stereographic projection.

Theorem 2.17. If C' is a circle on a sphere S, and o is stereographic
projection from a point p € S to a plane M, then o(C) is a circle on
M, unless p € C, in which case o(C) is a straight line. Conversely, if
K is a circle or a line on M, then o' (K) is a circle on S.

2.4.4. Clircles of Apollonius. There is a configuration of circles that
has fascinated geometers for millennia, called the circles of Apollonius,
that is intimately tied to stereographic projection and inversions. The
circles of Apollonius, shown in figure [§ depend on a pair of distinct
points in a plane, we’ll call them p and p’, and consist of two families of
circles. Each family having one degenerate member that is a straight
line. One family consists of all circles passing through both p and p'.
This is called the elliptic family. The second family consists of all circles
such that the inverse of p is p/, and this family is called the hyperbolic
family

When two circles intersect, we define the angle of intersection as the
angle between the tangent lines at the point of intersection that is on
the outside of both circles. If this is a right angle, then we say that the
circles are orthogonal.

Exercise 2.18. (1) Show that a circle K is orthogonal to a circle
C' if and only if i¢(K) = K.
(2) Show that for circles of Apollonius, any circle in the elliptic
family is orthogonal to any circle in the hyperbolic family.

This exercise implies that the full configuration is symmetric with
respect to inversion in any one of the constituent circles.

To connect the circles of Apollonius to stereographic projection, start
with two antipodal points on the sphere, such as the north and south
poles. Antipodal points determine a family of great circles, those that
pass through both points, like the meridians of longitude on the earth.
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FIGURE 8. Apollonian circles: the hyperbolic family
(left), the elliptic family (right) and the full configura-
tion (bottom)

The two points also determine another family of circles, those that have
those two points as their centers, like the parallels of latitude. The
stereographic projection of these two families of circles on the sphere
(from a point other than one of the two antipodal points, so perhaps
you'll need to stereographically project from magnetic north) are the
two families that make up the circles of Apollonius on the plane. The
meridians create an elliptic family, and the parallels form a hyperbolic
family:.
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FIGURE 9. A torus

Exercise 2.19. Describe the images of the great circles on the sphere
under stereographic projection in terms of how they intersect the unit
circle on the plane.

2.5. T?: the torus. The torus (pl. tori) is not a sphere, as even a
topologist could tell you. However, it is an important surface to be
familiar with in the study of the three dimensional sphere so we’ll take
a look at it. The torus (colloquially the doughnut, and written 72
for short) is the mathematical name for the surface of an inner tube.
Its essential characteristic is that there are two circles making up the
surface; the one that makes it roll, and the one that keeps the air in.

There are tori of every dimension, just as there are spheres and
Euclidean spaces of each dimension. Just as a point in R™ can be
specified by an n-tuple of points from R, a point on the n-torus 7" is
specified by an n-tuple of points from the circle S*. So a point on a
two dimensional torus is specified by a pair (6,1) € S x S'.

A torus of revolution is a torus in R3 that is defined by rotating
a circle C' about an axis ¢ that lies in the plane of C' but does not
intersect C'. An inner tube is a torus of revolution - the axis is the axle
of the wheel, and the circle C' is a radial slice of the tube. Any torus of
revolution can be described by two numbers: the large radius, or the
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FIGURE 10. A cross section of a plane cutting a torus of revolution

distance from the axis of revolution to the center of ', and the small
radius - the radius of C.

Exercise 2.20. (1) Starting with the parametric form for a circle

(cost,sint), find a parametric form for a torus of revolution
with large radius R and small radius r. Use 6 and 1 for the
parameters of your torus, so you are looking for a triple of
functions (z1(0,),x2(0,1),x3(0,7)) . The curves § = 6, and
1 = 1y for constants 0y and 1)y should produce curves like the
black circles in figure [9]

Find an algebraic equation in x1, x9, z3 that defines this same
torus of revolution. (Hint: start with the equation for the circle
that gets revolved, using coordinates y and x3. Then replace y
with \/x? 4+ x3 and get rid of the square root sign.)

For a suitably chosen cross section (viewing the picture cut
along the xoxs-plane), the plane x; = \/ﬁl’g and the torus
described in this problem appear as in figure [I0} Can you say
anything about the curves which are created by the intersection
of this plane and the torus?

A torus is often described topologically by identifying the opposite
edges of a square. The old video game asteroids was played on a torus;
when your spaceship left the top of the screen, it reappeared on the
bottom, and when it left the left edge, it reappeared on the right. The
torus can be given a geometry (a notion of straight lines, distances
and angles) coming from this square. So one difference between the
geometry on a sphere and the geometry on a torus is that on a torus,
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the sum of the angles of a triangle is 7, while on a sphere, it is always
greater.

We can’t preserve this geometry when putting the torus into R3,
but we can if we put it into R*. In R?® we can roll the square into a
cylinder, keeping the geometry intact, but then we can’t join the ends
of the cylinder without stretching the square in places. With an extra
dimension to work with, this problem goes away.

2.6. S3: the three sphere. Visualizing the three dimensional sphere
can be tricky, but there are many ways to do it, and with practice, you
can become quite familiar with this object.

Just as stereographic projection relates the circle to the line, and
S? to the Euclidean plane, stereographic projection gives us a map of
all but one point of S? via a distorted metric on a three dimensional
Euclidean space. One way to get to know S® is to get to know this
distortion.

Stereographic projection involves a choice of a point to project from,
and an antipodal point where we imagine the image space touching
the sphere. A pair of antipodal points defines an equator, the sphere of
one dimension less that sits halfway between them. For S?, this is the
familiar equatorial circle, and it is sent to the unit circle in the plane
via the stereographic projection defined above. For S2, the equator is
a S?, and under a stereographic projection to R?, it is sent to the unit
sphere.

Along this equatorial sphere, stereographic projection does not dis-
tort. Distances and shapes living on this sphere appear in the pro-
jection as they are on the sphere. Outside of the equator, things are
stretched. In the case of o : 5%\ {00} — R3, the whole infinite extent
of R? outside the unit sphere is used to represent only one hemisphere
of S3. In every direction, radiating away from the equatorial sphere,
there are lines that seem to diverge, but interpreted in S?, these lines
all converge on the north pole. Inside the equatorial S? on the other
hand, everything appears compressed. Moving with speeds relevant to
S3, and not R3, it takes as long to cross through the interior of the
equator as it does to cross the whole of space outside this ball, pass
through infinity, and return from the other direction.

The formula for stereographic projection that sends the sphere

vt 4wl ol (- 1/2) =1/4

to the plane x4 = 0 by projection from (0, 0,0, 1) is very similar to the
formula in one dimension less. No confusion should arise from calling
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FiGURE 11. A hypercube

them both by the same name.

T T2 Z3
U(.Tl,l'g,xg,%z;) - 1 T 5 1 x ) 1 x
— 44 — 44 — 44

Observe that this same formula works to project from the unit sphere,
just as the formula in R® worked for either the sphere resting on the
plane or cut along the equator.

The inverse map sending the plane back to the unit sphere

J_l (yh Y2, y3) -

< PAT) AT 2y3 -1+ Z?:l yz2>

1+Z?=1yi2’1+Z§:1yi2,1+2?:1yi2’ 1"‘2?:1?/12

Exercise 2.21. Use the fact that the stereographic projection of a
circle is a circle or a line to show that in every dimension, spheres are
sent to spheres and linear spaces by stereographic projection.

Exercise 2.22. To help us visualize S%, we’ll draw some shapes and
see what they look like in R3.
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(1) The vertices of a square inscribed in the unit circle with sides

parallel to the axes are the four points {(\%, \%) } The ver-

tices of a cube similarly inscribed in the unit sphere in R? are

the eight points {(%, j—%, %) } By analogy, the vertices of a
hypercube inscribed in the unit S® in R?* are the sixteen points
{(%, %, %, %) } Figure 11| shows what the hypercube looks
like under stereographic projection. Describe what is being
shown in this picture. Just like a square has sides that are
line segments, and a cube has side that are squared, a hyper-
cube has sides that are cubes. How many hypercube-side cubes
are there in this picture, and how are they configured?

(2) The great circles on S? are useful in understanding the geometry
of the two sphere. What are two possible analogs for the three
sphere, and how can they be recognized in the stereographic
image? Give a description similar to the one you gave in exercise
2.19. How could you define the distance between two points on
a sphere?

2.6.1. S C C?. Since R* can also be thought of as C?, setting
21 =21+ ixg, 2o = T3 + i$4,

the equation z? + z3 + 22 + 23 = 1, rewritten in terms of these complex
coordinates, provides the three sphere with the description

S3 = {(Zl,Zg) S C? | ‘lez + |ZQ‘2 = 1}.

Exercise 2.23. (1) Thinking of S? in this way, consider the surface
where |21|> = |2|>. What does this surface look like? The
surface divides S3 into two pieces. Describe them.

(2) What does the intersection of the solutions of the equation az; +
bzy = 0 with S look like? (The coefficients a and b can be real
or complex. The surface defined by az; + bz, = 0 is generally
called a complex line because if everything was real instead of
complex, it would define a line in the plane.)

2.7. S™. By now it should be apparent that there are spheres of every
dimension. There is even a reasonable body of mathematics that stud-
ies the infinite dimensional sphere, S*°. Graphical representations are
much harder to come by, since our intuition tends to break down, and
it is only with much practice that mathematicians are able to “see” in
dimensions higher than three or four. One of the most popular of the
higher dimensional spheres is S7, for various reasons that we won’t go
into in this course.
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3. QUATERNIONS

Points in a one dimensional Euclidan space form a field, the real
numbers, and points in a two dimensional space do as well, via the
complex numbers. What about three dimensional space, or higher
dimensions? Are there other fields that naturally correspond to these
geometric objects? It turns out that the answer is no if we insist on
looking for fields, but if we relax just a little bit, there are some more
rather interesting algebraic structures that can be found.

C is often defined using R? by naming the basis vectors 1 and ¢, and
imposing the rule that i> = —1. We defined the algebraic structure of
C using vector addition and multiplication by similar triangles. In that
development, the fact that —1 has a square root takes the form of an
observation or a theorem, but it works equivalently well as a definition.
For R*, it is much harder to draw pictures and make observations
based on elementary geometry, so to define an algebraic structure in
four dimensions, we’ll just give names to the basis vectors and show
what they do, and then observe that there is a geometric interpretation.

Definition 3.1. The quaternions (H for short after Hamilton, their
discoverer) are the elements of the vector space R* with basis {1, 1, j, k}.
Addition is defined by vector addition, and multiplication follows the
rules for scalar multiplication by real numbers, and:

i2:j2:k2:—1,
ij ==k, Jjk=1i, Fki=yj,
and
ji=—k, kj=—i, ik=—j.

Because of the last two lines above, it is clear that the quaternions
are not commutative with respect to multiplication. However, the rest
of the field axioms do hold for the quaternions, so they are called a

skew field.

Exercise 3.2. Try some quaternionic arithmetic:
(1) (3—i+2j)+ (i — j +2K)
2) (24 3i)(1+ 45 — 3k)
3) (144 —3k)(2+ 3i)
1) ((i + )2)(6 — )
5) (i +5)(2k(6 — j))
Recall that a complex number z = z 44y has a conjugate z = x —1iy.

Similarly, a quaternion ¢ = a + bi + ¢j + dk has a conjugate ¢ =
a—bi —cj—dk.

P e
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Exercise 3.3. The complex conjugate is useful when computing the
norm and the inverse of a complex number. Similarly for the quater-
nionic conjugate.
(1) For a quaternion ¢ = a+bi+cj+dk, check that the formula \/qq
agrees with the Euclidean vector norm |q| = va? + b? + ¢2 + d2.
(2) Inverses can be computed for quaternions using ¢=' = ¢/|q|*
Find (34 2i — j — k)~! using this formula, and check that this
is in fact the inverse.
(3) It can be checked by hand that |q1g2] = |q1]|g2| but this is a bit
tedious. You can either check this, or compute a few examples
so that it seems likely, or just believe it.

3.1. Rotations of S%. The most important application of the quater-
nions is to the algebra of rotations in R3. It was this application that led
Hamilton to discover them. He was searching for a way to convenient
description of rotations allowing for them to be combined, manipulated
and performed in sequence. Standard methods, involving matrices and
linear algebra can be cumbersome and opaque. Since a rotation is spec-
ified by an angle and an axis, with the axis is specified by a point on
52, and the angle a point on S*, a rotation is essentially given by three
numbers. The question becomes, given two sets of three numbers de-
termining a pair of rotations, how to write down the triple describing
the rotation caused by the composition: first one rotation and then
the other. This problem was extremely vexing to Hamilton and other
mathematicians of his time. One day, so the story goes, Hamilton was
walking through Dublin with his wife and insight hit him while cross-
ing the Brougham Bridge. In order to multiply triples, one needs to
actually multiply quadruples. His description of his moment of under-
standing captures the electric feeling of instant awareness that is the
addictive rush of doing mathematics.

That is to say, I then and there felt the galvanic circuit
of thought close; and the sparks which fell from it were
the fundamental equations between i,5,k; exactly such as
I have used them ever since.

On being struck by this idea, he carved the equations defining the
multiplication for i, j, and k into the soft stone of the bridge. The
actual inscription is gone, but a plaque has been installed to note this
mathematical event.

A complex number can be split into its real and imaginary parts.
Similarly, a quaternion ¢ = a + bi + ¢j + dk splits into its real and
purely quaternionic (or simply pure) parts. The real part is a and the
pure part is bi + ¢j + dk. A quaternion whose real part is zero is called
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a pure quaternion. The pure quaternions form a three dimensional
space, and it is this fact that allows quaternions to be used to describe
rotations in R3. If p = xi +yj + zk is a pure quaternion corresponding
to a point (z,y, z) € R3, and ¢ is any nonzero quaternion, compute the
conjugate ¢~ 'pg. We will show that this defines a rotation of R?.

Exercise 3.4. For a nonzero quaternion ¢ and a pure quaternion p as
above, define the map

Ry(p) =q 'pq

(1) Show that R,(p) is also a pure quaternion.

(2) Show that R,(p) is linear: R,(Ap) = AR,(p) for any real number
Aand R,(p+p') = Ry(p) + R,(p') for any two pure quaternions
p and p'.

(3) Note that R,(p) is the same rotation as Ry,(p) for any nonzero
real number A. So we can restrict ourselves to considering ro-
tations defined by the unit quaternions, those with |q| = 1.

(4) Show that |R,(p)] = lp|.

(5) Show that if = bi + ¢j + dk is the purely quaternionic part of
¢, then R,(r) = r. (It’s the axis of rotation!)

(6) The plane perpendicular to r is defined by the equation bz +
cy + dz = 0. Use the fact that R,(p) is linear and R,(r) = r to
show that this plane is preserved by R,.

(7) Choose a p on this plane perpendicular to the axis. For example,
if b and ¢ are not both zero, you can use p = ¢t — bj. The angle
between p and R,(p) can be computed using the formula

(The dot in the numerator is the scalar product (a.k.a. the
inner product or dot product) for vectors.) Show that the right
hand side is equal to a®> —b* — ¢ — d?, or 2a® — 1 if |¢| = 1. This
gives the angle of rotation, up to sign.

(8) To find the sign of the rotation, we need to find out if {r, p, R,(p)}
is a right handed set of vectors or a left handed set. Check
that if ¢ = % (and hence r = \/LE) and p = j, that the triple
{r,p, Ry(p)} is a right handed triple. This is the case in general.

(9) Observe that what we have shown is that for any quaternion,
we can write ¢ = s(cosf + usinf), where s € R, u is a unit
vector in the R? of pure quaternions, and the rotation R, is the
rotation about u by the angle 26.
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F1GURE 12. The vertices of an icosahedron lie at the
vertices of three golden rectangles. (image: Wikimedia)

This is an extremely useful way to compute rotations, and it is fre-
quently used in graphics programming for games and computer ani-
mations. Of course, these transformations could also be done using
3 x 3 matrices, but the angle and axis is much easier to read off the
quaternion than to extract from the matrix.

Exercise 3.5. Show that if v is a pure unit quaternion then u? = —1.

Exercise 3.6. (1) Start with an octahedron with vertices on the

coordinate axes in R3. Rotate the figure about its center so that
the edge between (1,0,0) and (0,1,0) becomes vertical. What
q do you use for the rotation, and what are the new coordinates
of the vertices?

The symmetry group of the octahedron is generated by a ro-
tation of 180° around an axis passing through the midpoint of
an edge, and a rotation of 120° around an axis passing through
the center of a face. Find the quaternions for these generators.
The vertices of an icosahedron sit on three golden rectangles
lying in orthogonal planes as in figure . (A golden rectangle
is one whose sides are in the golden ratio, 1 : %5) The
symmetries of the icosahedron are similarly generated by a 180°
rotation about an edge midpoint and a 120° rotation about a
face center. Find the quaternion generators for this group.

Perhaps the most exciting part about the description of rotations
using quaternions is that the composition of rotations corresponds to
quaternion multiplication.
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Exercise 3.7. If ¢ and ¢’ are nonzero quaternions, show that
Ry (Ry(p)) = Req (p)-

Observe that since the unit quaternions satisfy the equation a? +
b? + c® 4+ d*> = 1, they form a three dimensional sphere. Also, if ¢
and ¢ are unit quaternions then ¢¢’ is also a unit quaternion, so the
unit quaternions show us that the three dimensional sphere has the
structure of a group! Because we can use any quaternion to give us a
rotation via Iz,, and composition of rotations corresponds to quaternion
multiplication, this group is almost SO(3), the group of rotations in
R3. (SO stands for special orthogonal, meaning that a rotation is a
linear transformation that takes an orthogonal set of vectors or lines,
like the coordinate axes, to another set of orthogonal vectors, and that
among those, the rotations are special in that they don’t change the
scale of things or produce any reflections. So SO(n) stands for the
rotations of R™, or the isometries of the (n — 1)-sphere.)

Exercise 3.8. Show that if ¢ = sin(0/2)+wu cos(0/2) and ¢’ = sin(¢/2)+
veos(1/2) with u # v unit pure quaternions, and R, = Ry, then
u = —v and = —1, in other words, ¢ = —q.

So every rotation can be represented by a unit quaternion, quaternion
multiplication corresponds to composition of rotations, and the only
way to write a rotation in two different ways is to multiply be —1.
That is, we get an isomorphism of groups

S3/{1, 1} — SO(3).

3.2. Rotations of S®. The group structure of S also helps to de-
scribe the rotations of S? itself. Both left and right multiplication are
isometries of S3; for each unit quaternion g, h € S2, the maps

N(9) = 9q, pr(q) = qh,

denoting left and right multiplication respectively, preserve angles and
thus spherical distance.

Exercise 3.9. Check that the angle between ¢ = % and ¢ = %
ple

is the same as the angle between A;(¢) and Ax(¢’). This is an exam
of the general fact just stated.

Since quaternionic multiplication is not commutative, these two ac-
tions are generally distinct, and in fact, the only time when there exist
a g and an h so that A\,;(¢) = pn(q) for all ¢ is when g = h = £1. So
there is a homomorphism from two copies of S? to SO(4), the group
of rotations of R* and the isometries of S2. The kernel of this map is
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the group of order two where ¢ = h = +1, and in fact, this gives all
the rotations of R*; there is an isomorphism of groups

S?x S3/{(1,1),(—=1,—1)} — SO(4).

3.3. Quaternions and C2. Another way to think of R* and thus the
quaternions is as C2. If R* has coordinates {x1, s, 73,24}, set z; =
21 +ixe and 29 = w3 + iz4. We could try to “complexify” C2, just
like R? was complexified (by calling one basis vector 1 and the other
i and imposing the rule that 2 = —1 on top of scalar multiplication
by real numbers). To construct the quaternions, we can call one basis
vector of C? 1 and the other j, impose the rule j2 = —1 on top of scalar
multiplication by compler numbers, and call ij = k. If we also want
to have k? = —1, we see that 7 and j cannot commute, since if they
did, then we would have (:5)? = ijij = iijj = (—1)(=1) = 1, exactly
the opposite of what we want! So we are led to impose the rule that
1) = —Jt.

Alternatively, we could rethink how we defined the complex num-
bers, starting with R. The geometric procedure we used to define mul-
tiplication was essentially to define a complex number to be a linear
transformation of R? that (except for the complex number 0) is bijec-
tive and orientation preserving, i.e. one with positive determinant. A
linear transformation 7" : R? — R? is identified with the complex num-
ber T'(1,0). In other words, we identify the complex number z = a +ib

. . —b : :
with the matrix ( Z a > Note that the determinant of this ma-
trix is |z|. By analogy, we can consider a linear transformation of C2
given by the matrix Z; ? ) as a representative of the quaternion
—Z2 2

q=x1+1xs + jrs + kxy.

Exercise 3.10. Check that the matrix sum and product agrees with
the quaternion sum and product.

Just as the determinant of the matrix ( Z

) gives |z|, the deter-

21
this shows that |¢1q2| = |q1]|g2]-
The complex numbers of unit norm correspond to rotations of RZ.

minant of ) gives lg|. Since determinants are multiplicative,
1

By analogy, the linear transformations given by matrices ( Z; ? )
—Z2 2

with determinant 1 can be thought of as “rotations” of C2. The name
for this group of linear transformations is SU(2), SU for special unitary.
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The fact that SU(2) is almost the same as SO(3) is rather amazing,
because in general, these structures are quite different.

3.4. Octonions. You might wonder if we could make a similar con-
struction with H2. It turns out that you can, and you get an eight
dimensional structure called the octonions or the Cayley numbers (al-
though Hamilton’s friend John Graves discovered them before Cayley).
Like quaternion multiplication, octonion multiplication is not commu-
tative, and on top of that, it is not even associative! They do retain
the rest of the field axioms though. In particular, each octonion has a
multiplicative inverse. Beyond the octonions, there is no way to extend
this process and end up with an algebraic structure where everything
has an inverse. The construction of the octonions and the other details
of this discussion would take us too far afield, so you’ll have to look
it up for yourselves. There is a very nice book by John Conway and
Derek Smith on quaternions and octonions [2] that you could look at,
or there are the articles on John Baez’s website [I].
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F1GURE 13. Purple Vector Bundle by Lun-Yi Tsai
This painting represents a fibration.

4. THE HOPF FIBRATION

So now we are coming to the climax of this wandering investigation.
As suggested at the beginning, not everything that we have seen so
far will be directly relevant to understanding the Hopf fibration, but
the familiarity that you have developed with C, H, S3, and so on
will give you the ability to see this structure more easily. Interesting
simply for it’s esthetic merits, the Hopf fibration rests well balanced at
a maximal point of complexity that can be clearly depicted in a drawing
or sculpture. It is also favorite example of many mathematicians who
have little interest in making a visual model such as the paintings by
Lun-Yi Tsai, as it serves as a launching point into and an illustration
of the connections between many fields, ranging from Lie groups and
mathematical physics to algebraic topology and homotopy theory.

The Hopf fibration is a mapping from the three dimensional sphere
S3 to the two sphere S?. It presents a window to a deeper understand-
ing of both of these fundamental objects. A fibration is a very special
type of mapping. Fibrations combine two spaces into a third. These
two spaces are called the base and the fiber, and the combination is
called the total space of the fibration, or just the total space or the fi-
bration. Given two spaces X and Y, a fibration with base X, fiber Y,
and total space Z is defined using an atlas {U,} for X. (An atlas for
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a space X is basically a collection of open sets that completely cov-
ers the space, like the paper maps in a world atlas on your bookshelf
completely cover the earth.) Essentially, the total space is defined by
giving an atlas for Z where each chart looks like U, x Y in a way that
is consistent when passing from one chart to the next. The mapping
that is called the fibration is the mapping from Z to X that takes a
point represented on a chart U, X Y by a pair (z,y) to the point z.
For each x € X, there is a copy of Y in Z given by {z} x Y. This is
called the fiber over x. For any pair of spaces, we can define the trivial
fibration where Z = X x Y, and we only need one open set in our atlas
to describe the fibration.

Example 4.1. The Mobius strip is the simplest example of a non-
trivial fibration. Define the Mdbius strip M as the rectangle [0, 27] x
[—1,1] with the relation that (0,y) = (27, —y). To show that M is a
fibration with base S and fiber the interval [—1,1], we can use two
charts on S*: U; = (0,%) and U, = (m,7/2). Note that Us includes
the point 0 = 27. The intersection U; NU; consists of two components,
A =(0,pi/2) and B = (m,%F). On A, we can use the identification that
(0,t) € Uy x[—1,1] = (¢, s) € Uy x [—1,1] and on B, the identification
0,t) e Uy x [-1,1] = (¢, —s) € Uy x [—1,1].

4.1. Hopf fibration via the Riemann sphere. To begin the de-
scription of the Hopf fibration, we look again at S, described as sitting
in C%

SS = {(21,22) < (C2 | ‘lez + |Z2‘2 = 1}

Now, consider the ratio z5/z;. This is a complex number, unless z; = 0.
But in this case, since we know about P, the Riemann sphere, by
setting z,/0 = oo, we get a mapping

f:8%— 8% (21, 22) — 22/21.
This is the Hopf fibration.

Exercise 4.2. Write the Hopf fibration in coordinates as a mapping
from S3 C R* to S? C R3.

We would like to understand the fibers of this mapping. For this, it
helps to represent z; and 2, in polar coordinates, so write z; = rye!
and 2, = r2e2. Now observe that for any complex number A € C of
unit norm (JA| = 1), and any point (21, 22) in S%, not only is (Az1, Az2)
still in S? (since |A\z| = |\||z| = |z| for any complex number z) but in
fact, these points are all on the same fiber of the Hopf fibration; we
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have f(z1,22) = f(Az1, A22), as

f()\zla )\Z2) == i_zi

22

21
= f(Zb 22)'
The next exercise shows that this is the only way for two points to be
on the same fiber.

Exercise 4.3. Suppose that f(z1,22) = f(w1,ws) As above, write
these points in polar coordinates: z; = €' and z, = 192, w; =
511 and wy = $9€%2.

Write i—f = g—f as two equations using polar coordinates. Combine
these with the equations coming from the fact that (21, 22) and (wy, ws)
are on the sphere to show that there exists a unit complex number A
such that

(wl, U)Q) = (/\Zl, )\22).

Since (z1, z2) and (Az1, Azp) are distinct points for A # 1, the fibers
are topological circles. They are in fact geometric circles, the same
circles that were discovered in exercise 2.23]

Exercise 4.4. Show that the fibers of the Hopf fibration are the great
circles found in exercise 2.23

4.2. Hopf fibration via quaternions. Another way of creating the
Hopf fibration is by using the S* of unit quaternions to rotate S?. If
we choose a point p € S?, then for any quaternion ¢, R,(p) is also in
S%. So we can define a map g,(q) = R,(p), taking S® to S?. That is,
the image of the point g € S? is the point on S? where p is taken by
the rotation R,.

Exercise 4.5. Show that if p = (1,0, 0) then g, is the same as the map
f defined using the Riemann sphere!

This means that there is not just one Hopf fibration, but there are
in fact infinitely many. There is a Hopf fibration corresponding to each
point p € S2.

4.3. Fiber circles are linked. So there are a two sphere’s worth of
disjoint circles that fit together to make a three sphere. We certainly
don’t expect this to be a trivial fibration, so we’d like to know how the
circles fit together.

Exercise 4.6. To do this, consider the equatorial S?, call it F, of the
unit S® C R*, where x, = 0.
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FiGURE 14. Transition Gadget No. 7
Lun-Yi Tsai

(1) First, observe that the circle along the equator of F, where
x3 = 0 is a fiber of the Hopf mapping. Call this equator of the
equator F'.

(2) Now show that every other point of S can be connected to a
pair of antipodal points on E by some other fiber of the Hopf
mapping. For (z1,20) = (21, 79, 13, 74) € S?, write 2z, = 7™
and 2z = ree®. For roy # 0, multiply by some unit complex
number A to get a point on E. Since this fiber is a great circle,
note that the antipodal point on F is in this fiber as well.

Since every circular fiber contains a pair of antipodal points on the
equatorial S?, and joins those antipodal points with a section of the
circle in the southern hemisphere of S* (Under stereographic projection,
these points are inside the equatorial S?, where x4 < 0) and a section
in the northern hemisphere (outside E under stereographic projection,
where x4 > 0) every circle in the fibration is linked with F. Just as
a two dimensional sphere can be rotated so that any great circle is
horizontal, and can be used as an “equator”, or any pair of antipodal
points can be used as the poles, the three sphere can be rotated so
that any circle sits where this circle F' was sitting. So actually, any two
circles that are orbits of the Hopf fibration are linked, since one can
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FIGURE 15. Some circles on the torus.

be moved to sit at x3 = x4 = 0, and then all the rest of the orbits are
linked to this particular circle.

4.4. Latitudinal tori. The fiber circles fit together in another in-
teresting way. For z = 2 € Pg, consider the circles {|z| = r} for
0 < r < oo, and the points z = 0 and z = co. These are the lines of
latitude on the Riemann sphere, and the poles. Each of the poles has
as its corresponding orbit a circle in S3, and each line of latitude has a
circle’s worth of orbit circles.

Exercise 4.7. Note that these are the tori of exercise 2.231 We will
use stereographic projection to see how they fit together.
(1) What is o(f~1(0)? How about o(f~*(c0)?
(2) You found in exercise that the equation for a torus of rev-
olution is

(2] + 23 + 23 + R* — r?)* = AR*(x + 23)

Use this to show that the tori o(f~(]z| = r)) are tori of revo-
lution. What are the large and small radii?

(3) Use what you have found to show that the latitudinal tori are
nested as depicted in the paintings by Lun-Yi Tsai, as the tori of
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F1GURE 16. Transition Gadget No. 12
Lun-Yi Tsai

revolution generated by revolving a hyperbolic family of Apol-
lonian circles about the line in the family.

(4) Show that the fibers of the Hopf fibration are arranged on these
tori as the circles in exercise 2.20] or figures [I5] and

4.5. Left and right handed Hopf fibrations. In the discussion of
quaternions, it was observed that S3 can act on itself in two ways, on
the right and on the left. Related, when we defined the rotation R,,
we made a lexicographic choice that had consequences in the geometry
of the resulting Hopf fibration because of the non-commuativity of the
quaternions. Instead of ¢~ 'pg, we could have looked at gpg~!. This is
also a rotation of S2. We can define L,(p) = gpg~" (note that L, = R;),
and look at the Hopf fibrations defined by h,(¢q) = L,(p) for various p.
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FicUre 17. Right and left handed Hopf Fibrations
Hopf Fibration Triptych I (top) and II (bottom)
Lun-Yi Tsai

Exercise 4.8. (1) Fix p = i and show that the latitudinal tori for
gp are the same as those for h,,.
(2) Show that on each of these latitudinal tori, the fibers of g,
wrap around like right handed threads, and the fibers of h,
wrap around like left handed threads.



A YOUNG PERSON’S GUIDE TO THE HOPF FIBRATION 43

4.6. Applications and further directions. We have only scratched
the surface of what can be said about the Hopf fibration. Hopefully
your curiosity has been aroused and you will do some exploring on your
own. Here are some places that you could go to build upon what you
already know:

e Learn about Lie groups and flows by studying the what happens
to a S® when you use the quaternions from a fiber of a Hopf
fibration to move it around as in 3.2

e The study of elementary particles in physics makes use of sym-
metry groups such as SU(2). Learn about spin and how this
relates to the Hopf fibration.

e Homotopy groups are the basic objects of study in the field of
mathematics called Algebraic Topology. The fact that the Hopf
fibration is a non-trivial fibration S® — S? says something very
important about homotopy. Learn what this is.

e There are lots of ways that you could make computer gener-
ated images of the Hopf fibration using stereographic projection.
Figure out how to make some interesting images or animations.

e Make a real 3d model of some of the fibers in the Hopf fibration.

e And so on, there’s lots more you could do...
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