Visualizing Seven-Manifolds

Niles Johnson

nilesjohnson.net/seven-manifolds
In 1956 John Milnor startled the mathematical community by constructing smooth 7-dimensional manifolds that are homeomorphic but not diffeomorphic to the standard seven-sphere. His discovery opened a new branch of research in topology and won him the Fields Medal in 1962.

These manifolds are fibered over the four-sphere, with three-sphere fibers

\[S^3 \to M \to S^4. \]

They are the unit-sphere bundles of \(\mathbb{R}^4 \) bundles over \(S^4 \). As such they are classified by structure maps

\[S^3 \to SO(4). \]

\[\pi_3(SO(4)) \cong \mathbb{Z} \times \mathbb{Z} \]

\(\xi_{h,j} \leftrightarrow (h,j) \)

\(S^3 \), organized by Hopf fibers over \(S^2 \)
Given $(h, j) \in \mathbb{Z} \times \mathbb{Z}$, the total space M is produced by gluing together two copies of $S^3 \times D^4$ along their boundary.

$$M = M(h, j) = (S^3 \times D^4) \cup_{\xi_{h,j}} (S^3 \times D^4)$$

The attaching map $\xi_{h,j}$ uses quaternion multiplication, regarding $\partial D^4 = S^3 \subset \mathbb{H}$:

$$S^3 \times \partial D^4 \xrightarrow{\xi_{h,j}} S^3 \times \partial D^4 \quad (u, v) \mapsto (u, u^h v u^i)$$

Glue two copies of $S^3 \times D^4$ along their boundary.
At each point u of S^3\[\xi_{h,j}(u,-) : \partial D^4 \rightarrow \partial D^4\]
is a diffeomorphism of ∂D^4.

We depict this boundary as the stereographic projection of two reference circles in the unit quaternions,\[
\partial D^4 = \{(w, x, y, z) \in \mathbb{H} \mid w^2 + x^2 + y^2 + z^2 = 1\}
\]
one in the w-z plane and the other in the x-y plane.

These are the cores of two solid tori whose union is ∂D^4.
For each point \(u \in S^3 \), we depict the diffeomorphism \(\xi_{h,j}(u, -) \) by drawing the images of the reference circles under the map. We also draw the image of the two-sphere \(w = 0 \) (purple).
When \(h + j = 0 \),

\[
H^*(M) = \begin{cases}
\mathbb{Z} & * = 0, 3, 4, 7 \\
0 & \text{else}
\end{cases}
\]

However, \(M = M(h, -h) \) is homeomorphic to \(S^3 \times S^4 \) if and only if \(h = 0 \).

The map \(\xi_{h,-h}(u) \) is quaternion conjugation by \(u^h \) and therefore fixes \(-1\) and \(+1\). These lie on the \(w-z \) reference circle, and under stereographic projection they map to the center and boundary of \(D^3 \), respectively.
When \(h + j = 1 \), \(M \) is homeomorphic to \(S^7 \) but not necessarily of the same diffeomorphism type. A diffeomorphism invariant is given by:

\[
\lambda := (h - j)^2 - 1 \pmod{7}
\]

\[
k := h - j
\]

<table>
<thead>
<tr>
<th>(h + j = 1)</th>
<th>(\lambda)</th>
<th>(M_k)</th>
<th>(h + j = 1)</th>
<th>(\lambda)</th>
<th>(M_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_{1,0})</td>
<td>0</td>
<td>(S_1^7) standard</td>
<td>(\xi_{4,-3})</td>
<td>6</td>
<td>(S_7^7) exotic</td>
</tr>
<tr>
<td>(\xi_{2,-1})</td>
<td>1</td>
<td>(S_3^7) exotic</td>
<td>(\xi_{6,-5})</td>
<td>1</td>
<td>(S_{11}^7) exotic</td>
</tr>
<tr>
<td>(\xi_{3,-2})</td>
<td>3</td>
<td>(S_5^7) exotic</td>
<td>(\xi_{8,-7})</td>
<td>0</td>
<td>(S_{15}^7) exotic?</td>
</tr>
</tbody>
</table>
To compare diffeomorphism types of seven-spheres, we focus on the w-z reference circle.

Restricting to this circle, $\xi_{h,j}$ is a map from S^3 to the space of embedded circles in $S^3 = \partial D^4$.

$$\xi_{h,j}^* : S^3 \xrightarrow{\xi_{h,j}} \text{Diff}(S^3) \xrightarrow{\text{restr. to } (w,0,0,z)} \text{Emb}(S^1 \hookrightarrow S^3)$$
Stacking up the embedded circles along a Hopf fiber results in an embedded tube. Twisting of this embedding indicates the difficulty of finding a diffeomorphism between two separate seven-spheres.

\[
S^1 \xrightarrow{\text{Hopf fiber}} S^3 \xrightarrow{\xi_{h,j}} \text{Emb}(S^1 \hookrightarrow S^3)
\]

\[
\xi_{1,0}^*: \\
\xi_{2,-1}^*:
\]
Now let’s take a look at a few of the seven-manifolds constructed by Milnor! We’ll consider bundles $M(h, -h)$ followed by standard and exotic seven-spheres.

We show $\xi_{h,j}(u, -)$ for various u along a pair of Hopf fibers in S^3. One point u is circled, and we draw a closeup version of $\xi_{h,j}$ at that point.