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Introduction: The Hopf fibration

Fiber bundle structure for 𝑆3 over 𝑆2

Fundamental example of many phenomena in topology
and geometry
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Spheres

Quick review of ℝ𝑛, 𝑆𝑛

Three ways to think about spheres:

▶ Unit sphere in Euclidean space
▶ Two hemispheres glued together
▶ Disk with boundary collapsed to point



Fiber bundles: recall cartesian products

A fiber bundle is a “twisted” cartesian product.

For sets 𝐴 and 𝐵, their cartesian product is
𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Examples

▶ ℝ × ℝ

▶ ℝ × 𝑆1

▶ 𝑆1 × 𝑆1

Projection

𝐴 × 𝐵 → 𝐵



Fiber bundles: generalized projections

fiber
𝐹 ⟶

total space
𝐸 ⟶

base
𝐵

Examples
▶ Möbius band

▶ Hopf band

The Hopf fibration is a fiber bundle of spheres!
𝑆1 ⟶𝑆3 ⟶𝑆2

Note: A fiber bundle is a special
kind of fibration; we won’t discuss
more general fibrations here.



Quaternion arithmetic

First recall complex numbers, ℂ:
𝑥 + 𝑦 i with 𝑥, 𝑦 ∈ ℝ i2 = −1

Quaternions, ℍ:
𝑤 + 𝑥 i + 𝑦 j + 𝑧 k with 𝑤, 𝑥, 𝑦, 𝑧 ∈ ℝ

i2 = j2 = k2 = −1
i j = k j k = i k i = j

j i = −k k j = − i i k = − j

𝑆3 = unit quaternions
{𝑞 = 𝑤 + 𝑥 i + 𝑦 j + 𝑧 k |𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1}



Quaternion arithmetic: the Hopf map
For a unit quaternion 𝑞 = 𝑤 + 𝑥 i + 𝑦 j + 𝑧 k, you can check

𝑞−1 = 𝑤 − 𝑥 i − 𝑦 j − 𝑧 k

Define 𝜂(𝑞) = 𝑞 k𝑞−1

= 0 + (2𝑤𝑦 + 2𝑥𝑧) i + (2𝑦𝑧 − 2𝑤𝑥) j + (𝑤2 + 𝑧2 − 𝑥2 − 𝑦2)k

You can check: 𝜂(𝑞) also has unit length, so it is in 𝑆2 !

Fiber over a point (𝑎, 𝑏, 𝑐) ∈ 𝑆2 is
{𝑞 ∈ 𝑆3 | 𝜂(𝑞) = 𝑎 i + 𝑏 j + 𝑐 k}



Visualizing: stereographic projection

Image: Wikimedia CheChe (2017) [1]



Visualizing: stereographic projection

𝑆1 ⟶ℝ1 ∪ {∞} ≅ 𝐷1 ∪ {∞}
𝑆2 ⟶ℝ2 ∪ {∞} ≅ 𝐷2 ∪ {∞}
𝑆3 ⟶ℝ3 ∪ {∞} ≅ 𝐷3 ∪ {∞}

Image: Wikimedia Cmglee (2016) [2]



Visualizing: the Hopf fibration
𝑆1 ⟶ 𝑆3 ⟶𝑆2
𝑆1 ⟶𝐷3 ∪ {∞}⟶ 𝑆2

Let’s watch together: https://www.youtube.com/watch?v=AKotMPGFJYk

Image: Ken Shoemake (1997) [3]

https://www.youtube.com/watch?v=AKotMPGFJYk


Visualizing: the Hopf fibration

𝑆3 ≅ 𝐷3 ∪ {∞}
circles

𝑆2
points



Visualizing: the Hopf fibration

𝑆3 ≅ 𝐷3 ∪ {∞}
Hopf band

𝑆2
arc



Visualizing: the Hopf fibration

𝑆3 ≅ 𝐷3 ∪ {∞}
torus

𝑆2
circle



Visualizing: the Hopf fibration

𝑆3 ≅ 𝐷3 ∪ {∞}
solid torus

𝑆2
disk



Visualizing: the Hopf fibration

𝑆3 ≅ 𝐷3 ∪ {∞}
surfaces

𝑆2
curves



Visualizing: the Hopf fibration

Things to watch for:
▶ 𝑆3 is a union of two solid torii, joined along their
boundary

▶ A torus can be turned inside out in 𝑆3 without
intersecting itself

▶ The Hopf link is fibered: has a family of surfaces
whose boundaries are the link, and are
parametrized by a circle

Challenge questions:
▶ Explain why every pair of Hopf fibers is linked (with
linking number 1).

▶ Explain why the Hopf map is not null-homotopic.



Let’s watch now!

Thanks for this chance to talk about some cool
mathematics!

I’m happy to answer any questions.
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Conclusion: other things

The modular fibration; visualization by Ihechukwu Chinyere
https://www.youtube.com/watch?v=eqeqbjec97w

https://www.youtube.com/watch?v=eqeqbjec97w


Conclusion: other things

Exotic 7-spheres; based on work of Milnor
https://www.youtube.com/watch?v=II-maE5HEj0

https://www.youtube.com/watch?v=II-maE5HEj0
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