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Abstract (outline for the talk)

Goal: Explain the baroque title

» This talk introduces coherence results for
structure-preserving functors.

» We begin with motivating examples for braided and
symmetric monoidal functors.

» Then, we explain how the coherence theorems for
monoidal categories (plain, braided, and
symmetric) follow from characterizations of free
algebras over a 2-monad.

» Our coherence for algebra morphisms uses this
same approach, via a theory of universal
pseudomorphisms.

Based on joint work with Nick Gurski.



Example 1
Braided strong monoidal f: (A, +,B) = (A", B)

Diagram: ;
|
f(a)- f(a)- f(a) —=—— f(a+a)- f(a) —F f(a)- f(a+a)
f. f
21 f(1+B) f(B+1) l 2

fla+a+a) ————— > fla+a+a) ———— > f(a+a+a)

Dissolution: (treat f, as identity!)
( f(a). f(a), f(@) ) = ( f(a), f(a), f(@)) ( f(a), f(a), f(a))
1] 11

( f(a), f(a), f(a)) ), ( f(a), f(a), f(a) ) {81), ( f(a) f(a), f(a))

3(1 23)

» The dissolution diagram looks simpler!
» The dissolution diagram looks completely different!



Example Discussion

Two weird and surprising things:

1. The monoidal constraints of f could have nontrivial
braidings.
Replacing constraints with identities sounds like
forgetting nontrivial data. It is!

2. The monoidal constraints of f generally have
domain/codomain that are NOT equal. So, there is
not an identity morphism between them; we also
have to swap out objects.

That sounds complicated. It isn’t!



Example 2

Braided strong monoidal f: (A, +,B) = (A’,-, B)

Diagram:
fz 'fz

f(a)- f(b)- f(c)- f(d) > f(a+b)-f(c+d)
1.8-1 £,
f(a)- f(c)- f(b)- f(d) fla+b+c+d)
fy- 1, f+B+1)
fla+c)-f(b+d) L fla+c+b+d)

This is the diagram to verify whether the natural
transformation f, is monoidal natural.

Dissolve the diagram: recognize formal sums/products
and applications of f.



Example 2 Dissolution

Dissolution:

(@), fb), £(0), fd)) —— (f(@), f(b), f(c), f(d))

1,8,1)| |

(f(a), f(0), £(b), £(d)) (f(a), f(b), f(0), F(d))

1| Ja.e.0

(fa), f©), £(b), f(d)) ——> (f(a), f(c), £(b), f(d))

This diagram commutes.
Theorem: therefore original also commutes.
Note: yes, these examples are also easy to check directly

Main Application: coherence theory for general diagrams
involving strong monoidal f



Coherence for monoidal categories

Let’s review coherence for
plain/symmetric/braided monoidal categories

Diagrammatic Coherence: Does the diagram commute?

@ — 3 v S5 @

/ N

N /

@ — 3 v S5 @

Note: Diagram in a plain/symmetric/braided monoidal
category;
no functor involved yet



Coherence for monoidal categories

(Diagrammatic Coherence)
Plain Monoidal [ML98]. Every formal diagram commutes.

@ 5 r 5

/ N

N /

o5 e
Equivalently: Every parallel pair of formal morphisms
are equal.

Symmetric Monoidal [ML98]. Two parallel formal
morphisms are equal if they have the same underlying
permutation.

Braided Monoidal [JS93]. Two parallel formal morphisms
are equal if they have the same underlying braid.

What is a formal diagram!?



Coherence: Formal diagrams

Basic Idea: Consists only of structure morphisms
Doesn’t use “accidental” relations

Non-Examples: Joyal-Street monoidal structures via
group cocycles.
Many nontrivial diagrams of structure morphisms

More Precise Idea: Formal diagrams come from a free
monoidal category (plain/symmetric/braided).



Coherence: Free algebras

Slogan to be explained

Coherence is when you characterize a free algebra.
The more you characterize the free algebra, the more
coherence you have.

Definition. A diagram in a plain/symmetric/braided
monoidal category X is a functor

D:D - X
for a small category D.
Adiagram (D, D) is formal if it liftsto a . 76
free plain/symmetric/braided mon- D l
oidal category on a set G c obX.

(G for generators) D X



Coherence: Free algebras

T = M/S/B in any of the three free/forgetful adjunctions:
M 8 B
Cat <= ST MonCat , Cat <= SymMonCat Cat _<u—’ BrMonCat

Free algebras on a set of objects G [ML98, JS93]:

> MG is equivalent to MG: strict monoidal, objects are
lists, and morphisms are all identities.

> SG is equivalent to SG: strict monoidal, objects are
lists, and morphisms are permutations.

» BG is equivalent to BG: strict monoidal, objects are
lists, and morphisms are braidings.

Characterization of free morphisms implies
diagrammatic coherence



Coherence: Free algebras

Suppose (D, D) a formal diagram in X with 16
lift (D, D) to TG (for G c obX). b .

Key: If (D,D) commutes in TG, then the l
original diagram (D, D) in X also commutes. D,y

Slogan (again)

Coherence is when you characterize a free algebra.
The more you characterize the free algebra, the more
coherence you have.

This general approach works for any algebraic structure
encoded by a (2-)monad (free/forgetful adjunction).

» Structures defined by data and axioms

» Could be a 2-monad on cat, or more general K

> Motivates significant interest in 2-monad theory

> Leads to more general and abstract coherence



Pseudomorphism Coherence

What about diagrammatic coherence involving
pseudomorphisms?

Definition. A T-pseudomorphism between T-algebras is a
structure-preserving morphism

f: X -w X

(zigzag arrow = pseudo strength)
(pseudo = up to isomorphism)

Examples. Plain/Symmetric/Braided strong monoidal
functors (f, f,, f,)



Pseudomorphism Coherence

Question

Suppose we have a coherence theory for T-algebras X
and X'. (i.e., characterization of free algebras)

How can we tell when formal diagrams involving data of
a pseudomorphism f commute?

Call our answer:
Diagrammatic Coherence for Pseudomorphisms

(Note: only pseudomorphisms; not lax morphisms)
(see last slide for non-example in lax case)



Pseudomorphism Coherence: (UPC)

Suppose given T-algebras X and X’ and morphism
¢: G - G in underlying 2-category X(= Cat).
(In applications: ¢ = f_,.)

A universal pseudomorphism construction (UPC) for ¢ is
a T-pseudomorphism ¢ : TG - T(G', ¢) such that:

[0}
€] G’
N6 ~ K
\ u¢ , /
R . uTG —w»—> uT(G',¢) . s
uR’,f ~_us
k,*’ 3! u aTe.,
uX w,f ux’

Given f, R, S, there are unique R and S
Equivalently: a certain adjunction of arrow categories
What does this mean!?



Pseudomorphism Coherence: (UPC)

InTag,: (2-category with T-pseudomorphisms)

X Wr X'
R and S strict T-morphisms induced on generators
Restrictingto G: f|; = ¢|; = ¢|G
TG is freely generated by x € G
T(G', ¢) is freely generated by: x' € G, ¢[w] for
w € TG, and formal constraint morphisms

Taking R = n, and S = n, gives canonical strict
A=7j:T(G,$) - TG

vV vYyy

v



Pseudomorphism Coherence Theorem

Main Theorem [G)23]

Suppose T is one of M, S, B, or many other 2-monads.
(finitary on bicomplete domain is sufficient, not necessary)

Then T admitsa UPC ¢ : TG -w> T(G', §)
suchthat A: T(G',¢) - TG’
is an equivalence of T-algebras.

Proof Remark. The conditions for T are often equivalent
to T admitting a pseudomorphism classifier:

Q
Tﬂ[gpﬁ Z Tﬂ[ﬂstr

(2-adjunction between pseudo- and strict morphism variants)
(recall mention of more abstract 2-monadic coherence)



Diagrammatic Pseudomorphism Coherence

f: X -w> X'is aT-pseudomorphism;

G and G’ are object sets; let ¢ = f

TakingR =1 and S = 1, gives universal A = 1

Definition. formal diagram for f and dissolution:
[dissolution] |D|

T(G’, (I)) T TG’

GIEE i
Theorem. A is an equivalence.

Corollary. Suppose (D, D) is a formal diagram with lift D.
If the dissolution |D| = AD commutes, then so does D.



Diagrammatic Pseudomorphism Coherence

[dissolution] |D|

| pn ot
~ @) ————— > TG’
I l,\
)
[diagram]

Slogan. When T admits UPC such that A is an
equivalence, then commutativity of formal diagrams for
f reduces to commutativity of the dissolution diagrams
inTG'. (use algebra coherence)

Lifts of plain/braided/symmetric structure morphisms:
A sends them to corresponding morphisms in X’
A sends them to identities in TG’



Pseudomorphism Coherence: Example 2

(from before)

(@) FB)- £(0) fld) —— 222 f(a+b)- (e +d)
1'3'1l lfz
f(a)- f(c)- f(b)- f(d) D fla+b+c+d)
i f [ra-g-n
f(a+c)-f(b+d) & fla+c+b+d)

(@), £b), f(©), f(d)) —— (f(@), f(b), f(), f(d))

(18,1 1
(f@, f(e), fb), fd)) D] (f(a), f(b), f(c), f(d))
1) .81

(@), £, fb), fid)) —— (f(a@), f(c), £(b), f(d))



Pseudomorphism Coherence

[dissolution] |D|

I A v
' . TG, ¢) ———> TG’
I [lift] D _-» =
I PP e lA
|-
D - - D

[diagram]

Interpretation: In each formal diagram D, one can apply
naturality and other axioms to separate into two parts:
> one part commutes by axioms for f
» other part depends on axioms for T-algebras
A filters out first part, reduces to second part

Slogan (again). When A is an equivalence, commutativity
of a formal diagram for f reduces to commutativity of
the dissolution diagram in a free algebra.



Pseudomorphism Coherence: Example 3

Consider f-f: A= A’; (f-f)a)=f(a)-f(a).
(f braided = f - f plain monoidal)

Formal diagram for f:

(F- F)a)- (7 F)) (F- F)a)- (7 F))
f(a)- f(a)- £(b)- (b) 2l + f(a)- f(a)- f(b)- £(b)
1-B- 11 11 B-1
f(a)- £(b)- f(a)- (b) f(a)- £(b)- £(a)- F(b)
fz ) le lfz ° fz
f(a+b)- f(a+b) 2 f(a+b)- f(a~b)
(F-f)a~b) (f-f)a~b)

(monoidal naturality forB: f-f - f-f)



Pseudomorphism Coherence: Example 3

Dissolution:

(f(@), £(@), £(6), 7)) (s, fl@, f(b), b))
(1, B, 1)l02 04(1 B, 1)
(fa), £(b), fla), f(b)) (@), f(b), fla), f(b))
i 11

(fa), f(b), fla), f(b

o

fla) f(a) f(b) f(b) f(a) f(a) f(b) f(b)

0,0,0,0,0, 0,0,0;

, fla), f(b))

distinct as braids; equal as permutations



Conclusion

Slogan (again). When A is an equivalence, commutativity
of a formal diagram for f reduces to commutativity of
the dissolution diagram in a free algebra.

That's what we do in:

Universal pseudomorphisms,
with applications to diagrammatic coherence
for braided and symmetric monoidal functors
joint with N. Gurski

https://arxiv.org/abs/2312.11261

Thank You!
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Lax monoidal non-example [Lewis]

The left hand formal diagram for a lax monoidal functor
f: (Al + I) = (Aly'vll)
does not generally commute.

AT AT

fl) ———— 1" f()) 7 ———>1x7

P_1‘E lfo'1 P'1‘ lfo'1
1-fo 1-f,

f()- 1" ———— f(1)- f(1) Zxl ———— 7 x7

n

Non-Example. The diagram at right does not commute
when f = u: (45,®,7) = (Set, %, 1).
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