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Abstract (outline for the talk)

Goal: Explain the baroque title

▶ This talk introduces coherence results for
structure-preserving functors.

▶ We begin with motivating examples for braided and
symmetric monoidal functors.

▶ Then, we explain how the coherence theorems for
monoidal categories (plain, braided, and
symmetric) follow from characterizations of free
algebras over a 2-monad.

▶ Our coherence for algebra morphisms uses this
same approach, via a theory of universal
pseudomorphisms.

Based on joint work with Nick Gurski.



Example 1
Braided strong monoidal 𝑓 ∶ (𝐴, +, 𝛽) → (𝐴′, •, 𝛽)
Diagram:
𝑓(𝑎) • 𝑓(𝑎) • 𝑓(𝑎) 𝑓(𝑎 + 𝑎) • 𝑓(𝑎) 𝑓(𝑎) • 𝑓(𝑎 + 𝑎)

𝑓(𝑎 + 𝑎 + 𝑎)𝑓(𝑎 + 𝑎 + 𝑎) 𝑓(𝑎 + 𝑎 + 𝑎)

𝑓2 • 1 𝛽

𝑓2𝑓2
𝑓(1 + 𝛽) 𝑓(𝛽 + 1)

Dissolution: (treat 𝑓2 as identity!)
( 𝑓(𝑎), 𝑓(𝑎), 𝑓(𝑎) ) ( 𝑓(𝑎), 𝑓(𝑎), 𝑓(𝑎) ) ( 𝑓(𝑎), 𝑓(𝑎), 𝑓(𝑎) )

( 𝑓(𝑎), 𝑓(𝑎), 𝑓(𝑎) )( 𝑓(𝑎), 𝑓(𝑎), 𝑓(𝑎) ) ( 𝑓(𝑎), 𝑓(𝑎), 𝑓(𝑎) )

1 𝛽(1 2 3)

11
( 1, 𝛽 ) ( 𝛽, 1 )

▶ The dissolution diagram looks simpler!
▶ The dissolution diagram looks completely different!



Example Discussion

Two weird and surprising things:

1. The monoidal constraints of 𝑓 could have nontrivial
braidings.
Replacing constraints with identities sounds like
forgetting nontrivial data. It is!

2. The monoidal constraints of 𝑓 generally have
domain/codomain that are NOT equal. So, there is
not an identity morphism between them; we also
have to swap out objects.
That sounds complicated. It isn’t!



Example 2
Braided strong monoidal 𝑓 ∶ (𝐴, +, 𝛽) → (𝐴′, •, 𝛽)
Diagram:

𝑓(𝑎) • 𝑓(𝑏) • 𝑓(𝑐) • 𝑓(𝑑)

𝑓(𝑎) • 𝑓(𝑐) • 𝑓(𝑏) • 𝑓(𝑑)

𝑓(𝑎 + 𝑐) • 𝑓(𝑏 + 𝑑) 𝑓(𝑎 + 𝑐 + 𝑏 + 𝑑)

𝑓(𝑎 + 𝑏) • 𝑓(𝑐 + 𝑑)

𝑓(𝑎 + 𝑏 + 𝑐 + 𝑑)

1 • 𝛽 • 1

𝑓2 • 𝑓2
𝑓2

𝑓2 • 𝑓2

𝑓2

𝑓(1 + 𝛽 + 1)

This is the diagram to verify whether the natural
transformation 𝑓2 is monoidal natural.
Dissolve the diagram: recognize formal sums/products
and applications of 𝑓 .



Example 2 Dissolution
Dissolution:

( 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑐) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑐) , 𝑓(𝑏) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑐) , 𝑓(𝑏) , 𝑓(𝑑) ) ( 𝑓(𝑎) , 𝑓(𝑐) , 𝑓(𝑏) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑐) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑐) , 𝑓(𝑑) )

(1, 𝛽, 1)

1
1

1

1

(1, 𝛽, 1)

This diagram commutes.
Theorem: therefore original also commutes.
Note: yes, these examples are also easy to check directly
Main Application: coherence theory for general diagrams
involving strong monoidal 𝑓



Coherence for monoidal categories

Let’s review coherence for
plain/symmetric/braided monoidal categories

Diagrammatic Coherence: Does the diagram commute?

•
• ⋯ •

•
• ⋯ •

Note: Diagram in a plain/symmetric/braided monoidal
category;
no functor involved yet



Coherence for monoidal categories
(Diagrammatic Coherence)

Plain Monoidal [ML98]. Every formal diagram commutes.

•
• ⋯ •

•
• ⋯ •

Equivalently: Every parallel pair of formal morphisms
are equal.
Symmetric Monoidal [ML98]. Two parallel formal
morphisms are equal if they have the same underlying
permutation.
Braided Monoidal [JS93]. Two parallel formal morphisms
are equal if they have the same underlying braid.
What is a formal diagram!?



Coherence: Formal diagrams

Basic Idea: Consists only of structure morphisms
Doesn’t use “accidental” relations
Non-Examples: Joyal-Street monoidal structures via
group cocycles.
Many nontrivial diagrams of structure morphisms
More Precise Idea: Formal diagrams come from a free
monoidal category (plain/symmetric/braided).



Coherence: Free algebras
Slogan to be explained
Coherence is when you characterize a free algebra.
The more you characterize the free algebra, the more
coherence you have.

Definition. A diagram in a plain/symmetric/braided
monoidal category 𝑋 is a functor

𝐷∶ D→ 𝑋
for a small category D.
A diagram (D, 𝐷) is formal if it lifts to a
free plain/symmetric/braided mon-
oidal category on a set 𝐺 ⊂ ob𝑋.
(𝐺 for generators) D 𝑋

T𝐺

𝐷
𝐷̃



Coherence: Free algebras
T = M/S/B in any of the three free/forgetful adjunctions:

Cat MonCat ,M
u Cat SymMonCat ,S

u Cat BrMonCat
B
u

Free algebras on a set of objects 𝐺 [ML98, JS93]:
▶ M𝐺 is equivalent to M𝐺: strict monoidal, objects are
lists, and morphisms are all identities.

▶ S𝐺 is equivalent to 𝑆𝐺: strict monoidal, objects are
lists, and morphisms are permutations.

▶ B𝐺 is equivalent to 𝐵𝐺: strict monoidal, objects are
lists, and morphisms are braidings.

Characterization of free morphisms implies
diagrammatic coherence



Coherence: Free algebras
Suppose (D, 𝐷) a formal diagram in 𝑋 with
lift (D, 𝐷̃) to T𝐺 (for 𝐺 ⊂ ob𝑋).
Key: If (D, 𝐷̃) commutes in T𝐺, then the
original diagram (D, 𝐷) in 𝑋 also commutes.

D 𝑋

T𝐺

𝐷

𝐷̃

Slogan (again)
Coherence is when you characterize a free algebra.
The more you characterize the free algebra, the more
coherence you have.

This general approach works for any algebraic structure
encoded by a (2-)monad (free/forgetful adjunction).
▶ Structures defined by data and axioms
▶ Could be a 2-monad on Cat , or more general K
▶ Motivates significant interest in 2-monad theory
▶ Leads to more general and abstract coherence



Pseudomorphism Coherence

What about diagrammatic coherence involving
pseudomorphisms?

Definition. A T-pseudomorphism between T-algebras is a
structure-preserving morphism

𝑓 ∶ 𝑋 𝑋′

(zigzag arrow = pseudo strength)
(pseudo = up to isomorphism)

Examples. Plain/Symmetric/Braided strong monoidal
functors (𝑓, 𝑓2, 𝑓0)



Pseudomorphism Coherence

Question
Suppose we have a coherence theory for T-algebras 𝑋
and 𝑋′. (i.e., characterization of free algebras)
How can we tell when formal diagrams involving data of
a pseudomorphism 𝑓 commute?

Call our answer:
Diagrammatic Coherence for Pseudomorphisms
(Note: only pseudomorphisms; not lax morphisms)
(see last slide for non-example in lax case)



Pseudomorphism Coherence: (UPC)
Suppose given T-algebras 𝑋 and 𝑋′ and morphism
𝜙∶ 𝐺 → 𝐺′ in underlying 2-category K (= Cat ).
(In applications: 𝜙 = 𝑓ob.)

A universal pseudomorphism construction (UPC) for 𝜙 is
a T-pseudomorphism 𝜙̃ ∶ T𝐺 → T(𝐺′, 𝜙) such that:

𝐺 𝐺′

uT𝐺 uT(𝐺′, 𝜙)

u𝑋 u𝑋′

𝜙
𝜂𝐺 𝜅𝜙

𝑅 𝑆
u𝑅̄

∃!
u𝑆̄

∃!u𝑓

u𝜙̃

Given 𝑓 , 𝑅, 𝑆, there are unique 𝑅̄ and 𝑆̄
Equivalently: a certain adjunction of arrow categories
What does this mean!?



Pseudomorphism Coherence: (UPC)
In TAlg

ps
: (2-category with T-pseudomorphisms)

𝐺 𝐺′

T𝐺 T(𝐺′, 𝜙)

𝑋 𝑋′

𝜙

𝜂𝐺 𝜅𝜙

𝑅 𝑆
𝑅̄
∃!

𝑆̄
∃!𝑓

𝜙̃

▶ 𝑅̄ and 𝑆̄ strict 𝑇-morphisms induced on generators
▶ Restricting to 𝐺: 𝑓|𝐺 = 𝜙|𝐺 = 𝜙̃|𝐺
▶ T𝐺 is freely generated by 𝑥 ∈ 𝐺
▶ T(𝐺′, 𝜙) is freely generated by: 𝑥′ ∈ 𝐺′, 𝜙[𝑤] for
𝑤 ∈ T𝐺, and formal constraint morphisms

▶ Taking 𝑅 = 𝜂𝐺 and 𝑆 = 𝜂𝐺′ gives canonical strict
Δ = 𝜂̄ ∶ T(𝐺′, 𝜙) → T𝐺′



Pseudomorphism Coherence Theorem
Main Theorem [GJ23]
Suppose T is one of M, S, B, or many other 2-monads.
(finitary on bicomplete domain is sufficient, not necessary)

Then T admits a UPC 𝜙̃ ∶ T𝐺 T(𝐺′, 𝜙)
such that Δ∶ T(𝐺′, 𝜙) → T𝐺′
is an equivalence of T-algebras.

Proof Remark. The conditions for T are often equivalent
to T admitting a pseudomorphism classifier:

TAlg
ps TAlg

str

Q

(2-adjunction between pseudo- and strict morphism variants)
(recall mention of more abstract 2-monadic coherence)



Diagrammatic Pseudomorphism Coherence
𝑓 ∶ 𝑋 𝑋′ is a T-pseudomorphism;
𝐺 and 𝐺′ are object sets; let 𝜙 = 𝑓ob
Taking 𝑅 = 1𝐺 and 𝑆 = 1𝐺′ gives universal Λ = 1̄
Definition. formal diagram for 𝑓 and dissolution:

D 𝑋′

T(𝐺′, 𝜙) T𝐺′

𝐷
[diagram]

Λ
[lift] 𝐷̃

Δ
≃

[dissolution] |𝐷|

Theorem. Δ is an equivalence.
Corollary. Suppose (D, 𝐷) is a formal diagram with lift 𝐷̃.
If the dissolution |𝐷| = Δ 𝐷̃ commutes, then so does 𝐷.



Diagrammatic Pseudomorphism Coherence

D 𝑋′

T(𝐺′, 𝜙) T𝐺′

𝐷
[diagram]

Λ
[lift] 𝐷̃

Δ
≃

[dissolution] |𝐷|

Slogan. When T admits UPC such that Δ is an
equivalence, then commutativity of formal diagrams for
𝑓 reduces to commutativity of the dissolution diagrams
in T𝐺′. (use algebra coherence)

Lifts of plain/braided/symmetric structure morphisms:
Λ sends them to corresponding morphisms in 𝑋′
Δ sends them to identities in T𝐺′



Pseudomorphism Coherence: Example 2
(from before)

𝑓(𝑎) • 𝑓(𝑏) • 𝑓(𝑐) • 𝑓(𝑑)

𝑓(𝑎) • 𝑓(𝑐) • 𝑓(𝑏) • 𝑓(𝑑)

𝑓(𝑎 + 𝑐) • 𝑓(𝑏 + 𝑑) 𝑓(𝑎 + 𝑐 + 𝑏 + 𝑑)

𝑓(𝑎 + 𝑏) • 𝑓(𝑐 + 𝑑)

𝑓(𝑎 + 𝑏 + 𝑐 + 𝑑)

1 • 𝛽 • 1

𝑓2 • 𝑓2
𝑓2

𝑓2 • 𝑓2

𝑓2

𝑓(1 + 𝛽 + 1)

𝐷

( 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑐) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑐) , 𝑓(𝑏) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑐) , 𝑓(𝑏) , 𝑓(𝑑) ) ( 𝑓(𝑎) , 𝑓(𝑐) , 𝑓(𝑏) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑐) , 𝑓(𝑑) )

( 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑐) , 𝑓(𝑑) )

(1, 𝛽, 1)

1
1

1

1

(1, 𝛽, 1)

|𝐷|



Pseudomorphism Coherence

D 𝑋′

T(𝐺′, 𝜙) T𝐺′

𝐷
[diagram]

Λ
[lift] 𝐷̃

Δ
≃

[dissolution] |𝐷|

Interpretation: In each formal diagram 𝐷, one can apply
naturality and other axioms to separate into two parts:
▶ one part commutes by axioms for 𝑓
▶ other part depends on axioms for T-algebras

Δ filters out first part, reduces to second part
Slogan (again). When Δ is an equivalence, commutativity
of a formal diagram for 𝑓 reduces to commutativity of
the dissolution diagram in a free algebra.



Pseudomorphism Coherence: Example 3
Consider 𝑓 • 𝑓 ∶ 𝐴 → 𝐴′; (𝑓 • 𝑓)(𝑎) = 𝑓(𝑎) • 𝑓(𝑎).
(𝑓 braided⇒ 𝑓 • 𝑓 plain monoidal)
Formal diagram for 𝑓 :

𝑓(𝑎) • 𝑓(𝑎) • 𝑓(𝑏) • 𝑓(𝑏)

𝑓(𝑎) • 𝑓(𝑏) • 𝑓(𝑎) • 𝑓(𝑏)

𝑓(𝑎 + 𝑏) • 𝑓(𝑎 + 𝑏)

𝑓(𝑎) • 𝑓(𝑎) • 𝑓(𝑏) • 𝑓(𝑏)

𝑓(𝑎) • 𝑓(𝑏) • 𝑓(𝑎) • 𝑓(𝑏)

𝑓(𝑎 + 𝑏) • 𝑓(𝑎 + 𝑏)

(𝑓 • 𝑓)(𝑎) • (𝑓 • 𝑓)(𝑏) (𝑓 • 𝑓)(𝑎) • (𝑓 • 𝑓)(𝑏)

(𝑓 • 𝑓)(𝑎 + 𝑏) (𝑓 • 𝑓)(𝑎 + 𝑏)

𝛽 • 𝛽

𝛽

1 • 𝛽 • 1

𝑓2 • 𝑓2

1 • 𝛽 • 1

𝑓2 • 𝑓2

(monoidal naturality for 𝛽∶ 𝑓 • 𝑓 → 𝑓 • 𝑓)



Pseudomorphism Coherence: Example 3
Dissolution:
(𝑓(𝑎) , 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑏))

(𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑎) , 𝑓(𝑏))

(𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑎) , 𝑓(𝑏))

(𝑓(𝑎) , 𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑏))

(𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑎) , 𝑓(𝑏))

(𝑓(𝑎) , 𝑓(𝑏) , 𝑓(𝑎) , 𝑓(𝑏))

(𝛽 , 𝛽)
𝜎1𝜎3

𝛽
𝜎2𝜎1𝜎3𝜎2

(1 , 𝛽 , 1) 𝜎2

1

(1 , 𝛽 , 1)𝜎2

1

𝑓(𝑎) 𝑓(𝑏)𝑓(𝑎) 𝑓(𝑏)
𝜎2𝜎1𝜎3𝜎2𝜎2

v.s.
𝑓(𝑎) 𝑓(𝑏)𝑓(𝑎) 𝑓(𝑏)
𝜎2𝜎1𝜎3

distinct as braids; equal as permutations



Conclusion

Slogan (again). When Δ is an equivalence, commutativity
of a formal diagram for 𝑓 reduces to commutativity of
the dissolution diagram in a free algebra.

That’s what we do in:

Universal pseudomorphisms,
with applications to diagrammatic coherence
for braided and symmetric monoidal functors

joint with N. Gurski

https://arxiv.org/abs/2312.11261

Thank You!

https://arxiv.org/abs/2312.11261
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Lax monoidal non-example [Lewis]

The left hand formal diagram for a lax monoidal functor
𝑓 ∶ (𝐴, +, 𝐼) → (𝐴′, •, 𝐼′)
does not generally commute.

𝑓(𝐼) 𝐼′ • 𝑓(𝐼)

𝑓(𝐼) • 𝐼′ 𝑓(𝐼) • 𝑓(𝐼)

𝜆−1
≅

𝜌−1 ≅ 𝑓0 • 1

1 • 𝑓0

Z 1 × Z

Z × 1 Z × Z

𝜆−1
≅

𝜌−1 ≅ 𝑓0 • 1

1 • 𝑓0

Non-Example. The diagram at right does not commute
when 𝑓 = u∶ (Ab, ⊗,Z) → (Set , ×,1).
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