Modeling stable One-types

Angélica Osorno

University of Chicago

January 7, 2012

joint with Niles Johnson

Definition

A homotopy n-type X is a space such that for all $i \ge n$ and $x \in X$,

$$\pi_i(X,x)=0$$

2 / 13

Definition

A homotopy n-type X is a space such that for all $i \ge n$ and $x \in X$,

$$\pi_i(X,x)=0$$

Goal

Classify homotopy *n*-types algebraically.

Definition

A homotopy n-type X is a space such that for all $i \ge n$ and $x \in X$,

$$\pi_i(X,x)=0$$

Goal

Classify homotopy *n*-types algebraically.

A lot of work has been done in this field:

Definition

A homotopy n-type X is a space such that for all $i \ge n$ and $x \in X$,

$$\pi_i(X,x)=0$$

Goal

Classify homotopy *n*-types algebraically.

A lot of work has been done in this field:

- Whitehead: groups (connected 1-types), crossed modules (connected 2-types)
- Loday: cat-n-groups
- Conduché: crossed modules of length two
- Baues: identifying specific data

Homotopy hypothesis

Grothendieck's homotopy hypothesis

"Weak n-groupoids model homotopy n-types"

Homotopy hypothesis

Grothendieck's homotopy hypothesis

"Weak *n*-groupoids model homotopy *n*-types"

For n = 1, there is an equivalence of homotopy categories:

$$B: \mathsf{Ho}(\mathit{Gpd}) \rightleftarrows \mathsf{Ho}(\mathit{Top}_{\leqslant 1}) : \Pi_1.$$

Stable homotopy *n*-types

Definition

A connective stable homotopy n-type is a spectrum X such that for all i > n and i < 0

$$\pi_i(X)=0.$$

We denote by S_0^n the full subcategory of the category of spectra given by the connective stable *n*-types.

Stable homotopy *n*-types

Definition

A connective stable homotopy n-type is a spectrum X such that for all i > n and i < 0

$$\pi_i(X)=0.$$

We denote by S_0^n the full subcategory of the category of spectra given by the connective stable *n*-types.

Guess for an algebraic model

unstable 1-types \leftrightarrow groupoids E_{∞} spaces \leftrightarrow symmetric monoidal group-like \leftrightarrow invertible objects

Definition

A Picard groupoid $\mathcal C$ is a symmetric monoidal groupoid such that all objects are invertible.

Definition

A Picard groupoid $\mathcal C$ is a symmetric monoidal groupoid such that all objects are invertible.

Theorem

The functors $\Pi_1: \mathcal{S}^1_0 \to Pic$ and $B: Pic \to \mathcal{S}^1_0$ induce an equivalence of homotopy categories.

Definition

A $Picard\ groupoid\ \mathcal{C}$ is a symmetric monoidal groupoid such that all objects are invertible.

Theorem

The functors $\Pi_1: \mathcal{S}_0^1 \to Pic$ and $B: Pic \to \mathcal{S}_0^1$ induce an equivalence of homotopy categories.

Question: how can we see the Postnikov data?

Definition

A $Picard\ groupoid\ \mathcal{C}$ is a symmetric monoidal groupoid such that all objects are invertible.

Theorem

The functors $\Pi_1: \mathcal{S}^1_0 \to Pic$ and $B: Pic \to \mathcal{S}^1_0$ induce an equivalence of homotopy categories.

Question: how can we see the Postnikov data?

$$\pi_0 \mathcal{C} := ob\mathcal{C}/\cong$$

$$\pi_1 \mathcal{C} := \mathcal{C}(I, I)$$

Definition

A Picard groupoid $\mathcal C$ is a symmetric monoidal groupoid such that all objects are invertible.

Theorem

The functors $\Pi_1: \mathcal{S}_0^1 \to Pic$ and $B: Pic \to \mathcal{S}_0^1$ induce an equivalence of homotopy categories.

Question: how can we see the Postnikov data?

$$\pi_0\mathcal{C}:=ob\mathcal{C}/\cong$$

$$\pi_1 \mathcal{C} := \mathcal{C}(I, I)$$

The functors B and Π_1 preserve the abelian groups π_0 and π_1 .

◆ロ → ◆部 → ◆ き → も ● ・ か へ ○

The k-invariant

The remaining data for a stable 1-type X is the k-invariant

$$k_0 \in [K(\pi_0 X, 0), K(\pi_1 X, 2)]_{st} \cong \textit{Hom}(\pi_0 X / 2\pi_0 X, \pi_1 X),$$

which corresponds to

$$\eta^*: \pi_0 X \to \pi_1 X$$
.

A Picard groupoid $\mathcal C$ is equivalent to a sekeletal Picard groupoid defined uniquely by the following data:

A Picard groupoid $\mathcal C$ is equivalent to a sekeletal Picard groupoid defined uniquely by the following data:

• The abelian groups $\pi_0 C$, $\pi_1 C$,

A Picard groupoid $\mathcal C$ is equivalent to a sekeletal Picard groupoid defined uniquely by the following data:

- The abelian groups $\pi_0 C$, $\pi_1 C$,
- a cocycle $h \in C^3(\pi_0 C, \pi_1 C)$, defined by the associativity ismorphism;

A Picard groupoid $\mathcal C$ is equivalent to a sekeletal Picard groupoid defined uniquely by the following data:

- The abelian groups $\pi_0 C$, $\pi_1 C$,
- a cocycle $h \in C^3(\pi_0 C, \pi_1 C)$, defined by the associativity ismorphism;
- a function $c:(\pi_0C)^2 \to \pi_1C$, defined by the symmetry isomorphism.

A Picard groupoid $\mathcal C$ is equivalent to a skeletal and strict Picard groupoid, with objects given by $\pi_0\mathcal C$, automorphisms given by $\pi_1\mathcal C$ and symmetry isomorphism defined by the quadratic map

$$\pi_0 \mathcal{C} \to \pi_1 \mathcal{C},$$
 $x \mapsto c(x, x).$

The truncated sphere spectrum

Let $\mathbb S$ be the skeletal Picard groupoid with $ob\mathbb S=\mathbb Z$,

$$\mathbb{S}(m,n) = \begin{cases} 0 & \text{if } m \neq n \\ \mathbb{Z}/2 & \text{if } m = n, \end{cases}$$

The truncated sphere spectrum

Let $\mathbb S$ be the skeletal Picard groupoid with $ob\mathbb S=\mathbb Z$,

$$\mathbb{S}(m,n) = \begin{cases} 0 & \text{if } m \neq n \\ \mathbb{Z}/2 & \text{if } m = n, \end{cases}$$

with symmetry isomorphism:

$$c_{m,n} = \begin{cases} 0 & \text{if } mn \text{ is even} \\ 1 & \text{if } mn \text{ is odd.} \end{cases}$$

The truncated sphere spectrum

Let \mathbb{S} be the skeletal Picard groupoid with $ob\mathbb{S} = \mathbb{Z}$,

$$\mathbb{S}(m,n) = \begin{cases} 0 & \text{if } m \neq n \\ \mathbb{Z}/2 & \text{if } m = n, \end{cases}$$

with symmetry isomorphism:

$$c_{m,n} = \begin{cases} 0 & \text{if } mn \text{ is even} \\ 1 & \text{if } mn \text{ is odd.} \end{cases}$$

Let ${\mathcal E}$ be the symmetric monoidal category of finite pointed sets and isomorphisms. There is a symmetric monoidal functor

$$\mathcal{E} \to \mathbb{S}$$
.

The space BS is the 1-truncation of the zeroth space of the sphere spectrum.

The space BS is the 1-truncation of the zeroth space of the sphere spectrum.

Proof.

The space BS is the 1-truncation of the zeroth space of the sphere spectrum.

Proof.

The diagonal map is an isomorphism on π_0 and π_1 .

Note: We can also describe a bipermutative structure on \mathbb{S} such that $B\mathbb{S}$ is the 1-truncation of the zeroth space of the sphere spectrum in the category of E_{∞} ring spaces.

Let $F: \mathcal{C} \to \mathcal{D}$ by a symmetric monoidal functor between Picard groupoids.

Let $F:\mathcal{C}\to\mathcal{D}$ by a symmetric monoidal functor between Picard groupoids.

Coker(F) (Vitale)

Let Coker(F) be the bigroupoid:

• obCoker $(F) = \mathcal{D}$.

Let $F:\mathcal{C}\to\mathcal{D}$ by a symmetric monoidal functor between Picard groupoids.

Coker(F) (Vitale)

Let Coker(F) be the bigroupoid:

- obCoker $(F) = \mathcal{D}$.
- ② The 1-cells $X \to Y$ are pairs (f, N), where

$$X \xrightarrow{f} Y \otimes F(N)$$

Let $F:\mathcal{C}\to\mathcal{D}$ by a symmetric monoidal functor between Picard groupoids.

Coker(F) (Vitale)

Let Coker(F) be the bigroupoid:

- **1** $obCoker(F) = \mathcal{D}$.
- 2 The 1-cells $X \to Y$ are pairs (f, N), where

$$X \xrightarrow{f} Y \otimes F(N)$$

3 The 2-cells between (f, N) and (f', N') are morphisms $\alpha : N \to N'$ of $\mathcal C$ such that :

The bigroupoid Coker(F) is symmetric monoidal, and all objects are weakly invertible, i.e., it is a Picard bigroupoid.

The bigroupoid Coker(F) is symmetric monoidal, and all objects are weakly invertible, i.e., it is a Picard bigroupoid. There is a canonical symmetric monoidal functor

$$c_F: \mathcal{D} \to Coker(F)$$

that induces a long exact sequence

$$0 \longrightarrow \pi_{2} \operatorname{Coker}(F) \longrightarrow \pi_{1} \mathcal{C} \longrightarrow \pi_{1} \mathcal{D}$$

$$\longrightarrow \pi_{1} \operatorname{Coker}(F) \longrightarrow \pi_{0} \mathcal{C} \longrightarrow \pi_{0} \mathcal{D} \longrightarrow \pi_{0} \operatorname{Coker}(F) \longrightarrow 0$$

The bigroupoid Coker(F) is symmetric monoidal, and all objects are weakly invertible, i.e., it is a Picard bigroupoid. There is a canonical symmetric monoidal functor

$$c_F: \mathcal{D} \to Coker(F)$$

that induces a long exact sequence

$$0 \longrightarrow \pi_{2} \operatorname{Coker}(F) \longrightarrow \pi_{1} \mathcal{C} \longrightarrow \pi_{1} \mathcal{D}$$

$$\longrightarrow \pi_{1} \operatorname{Coker}(F) \longrightarrow \pi_{0} \mathcal{C} \longrightarrow \pi_{0} \mathcal{D} \longrightarrow \pi_{0} \operatorname{Coker}(F) \longrightarrow 0$$

Corollary

The classifying space BCoker(F) is a model for the homotopy cofiber of BF.

Looking into the future

Use similar ideas to model stable2-types (n-types?) with Picard bigroupoids (n-groupoids?).