
GALOIS NOTES

NILES JOHNSON

Abstract. This is a collection of notes from our reading project on Galois theory for rings and
ring spectra. An attempt is made to outline main ideas and give references, but only a minimal
effort has been put into checking details.
Many thanks are due to the various people who participated; without their interest, we certainly
wouldn’t have made it even this far.

1. Review for rings

1.1. Revisionist Galois theory for fields. Let L/K be an extension of fields, and G a finite
group. Then L/K is G-Galois if G = Aut(L/K) and K = LG. In this situation there is a bijection
between subgroups H ≤ G and intermediate fields L/F/K.

Here are two results from Galois theory for fields which find generalizations in the theory for
rings:

• Hilbert’s theorem 90: H1(G,U(L)) = 0, where U(L) = L× denotes the group of units in L.
• Br(K) = H2(Ksep/K,U(Ksep)).

To prepare for the generalization to rings, we make a couple of definitions and reformulate the
Galois condition.

Definition 1.2 (Twisted Group Ring). As an L-vector space, L〈G〉 is L×G. The multiplication
is twisted by the action of G:

(x, g) · (y, h) = (xg(y), gh).

Note that there is a natural map

j : L〈G〉 → HomK(L,L)

given by

(x, g) 7→ (t 7→ x · g(t)).

This is adjoint to the action of L on L〈G〉:
L⊗ L〈G〉 → L.

Proposition 1.3. The map j is a K-algebra homomorphism and is bijective if and only if L/K is
G-Galois.

Idea of proof. Dedekind’s lemma says that

AlgK(A,L) ⊂ HomK(A,L)

is a linearly independent subset, so j is injective. When L/K is Galois, j is surjective by a dimension
count. For details see [Dre95]. . . .�

Notation 1.4. Let L×G denote
∏
G L, set maps from G to L.
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There is a natural map

h : L⊗K L→ L×G

given by

(x⊗ y) 7→ (x · g(y))g∈G.

Proposition 1.5. The map h is an L-algebra homomorphism, and is bijective if and only if L/K
is G-Galois.

Idea of proof. The map h is the L-module dual of j:

HomL(L⊗K L,L) ∼= HomK(L,L)

and
HomL(L×G, L) ∼= L〈G〉.

. . .�

1.6. Basic definitions and theorems for rings. Most of this subsection is based on Chapter 0
of Greither [Gre92].

The following theorem generalizes the previous results for fields; part ii is taken as the definition
of G-Galois.

Theorem 1.7. For a map (inclusion) of commutative rings R → T , and a finite group G ≤
AutR-alg(T ), suppose R ∼= TG. Then the following are equivalent:

i. T is finitely-generated and projective over R and
j : T 〈G〉 → HomR(T, T ) is an isomorphism (of R-algebras).

ii. h : T ⊗R T → T×G is an isomorphism (of T -algebras).
(This implies that T is finitely-generated and projective over R.)

Remark 1.8. Note that the Galois correspondence (Theorems 1.19 and 1.20) implies that in this
case G = AutR-alg(T ).

The following property is essential in many of the applications of Galois extensions:

Lemma 1.9. If T/R is G-Galois, then T is faithfully flat over R (T ⊗R − preserves and detects
exact sequences).

Idea of proof. Use Nakayama’s lemma: T/mT 6= 0 because Tm 6= 0 (Rm ⊂ Tm). . . .�

The following results illustrate some of the benefits of faithful-flatness. Note however that this sit-
uation does not generalize to topological Galois extensions. Check the counterexamples of Wieland
or Baker-Richter: Section 4.1, [BR10].

Proposition 1.10. Let L be faithfully flat over R, and suppose that G is a group acting on T/R.
If L⊗R T/L is G-Galois, then T/R is G-Galois.

Note. It is important here that the G-action is induced by that on T/R; Q( 3
√

2)/Q has a trivial
Z/3 action, and hence extending scalars will always result in a trivial Z/3 action.

Lemma 1.11. The trace map tr : T → R splits R as a summand of T

Note. The previous result does not generalize to the topological setting.

Lemma 1.12. Let T/R and T ′/R be G-Galois extensions. Then every map of G-Galois extensions
ϕ : T → T ′ is an isomorphism.
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Idea of proof. Flat base change to the case of a trivial extension (which can always be done), and
without loss of generality take R to be local. In that case, one can construct an orthogonal basis
and check directly that ϕ is an isomorphism. . . .�

Lemma 1.13. Let T/R be G-Galois. Then T is a finitely-generated projective R-module of rank 1
(an invertible module) over the group ring R[G].

Idea of proof.
T [G]⊗R[G] T ∼= T ⊗R T ∼= T×G

Now T×G is invertible over T [G], and hence we are done by faithfully flat descent. . . .�

1.14. Galois correspondence. The Galois correspondence for rings requires a couple of additional
definitions; this could probably be explained more clearly using the language of Galois connections.

Definition 1.15. An R-algebra A is called separable over R if A is projective over Ae := A⊗RAop.

Definition 1.16. Suppose G acts on T/R. Two elements σ, τ ∈ G are called strongly distinct if
for every non-zero idempotent e ∈ T there is some x ∈ T such that e · σ(x) 6= e · τ(x). Note that if
T has no non-trivial idempotents then strongly distinct is the same as distinct.

Definition 1.17. T is called connected if it has no non-trivial idempotents

Definition 1.18. Suppose T/R is G-Galois and let U be an intermediate ring. We say that U is
G-strong if the restrictions to U of any two elements of G are either strongly distinct or equal.

The following theorems come from the first chapter of [CHR65]. As done there, we put in brackets
those statements which are vacuous in the case that T is connected.

Theorem 1.19. For T/R G-Galois and H ≤ G, let U = TH . Then

i. U is separable over R [and G-strong].
ii. T/U is H-Galois.

iii. H = Aut(T/U).
iv. if H / G then U/R is G/H-Galois.

Idea of proof. Let δ : T → T×G be the T -module map induced by sending the unit of T to (δeσ)σ∈G,
the element which has a 1 in the e-coordinate and 0’s elsewhere. The isomorphism hT/R gives a
lift in the diagram below.

T

yyt
t

t
t

t

δ
��

T ⊗R T
hT/R

∼=
//

��

T×G

��
T ⊗U T

hT/U // T×H

Now the lift imples that hT/U is surjective, which imples that jT/U is an isomorphism and hence
T/U is H-Galois. To see that U/R is separable, we have the following: T/U Galois implies that T is
finitely-generated and projective over U ⊗R U , which implies that T ⊗R T is also finitely-generated
and projective over U ⊗R U . T/R Galois implies that T/R is separable, which is to say that T is
finitely-generated and projective over T ⊗RT . Now since T/U is Galois, U is a T -module summand
of T and thus a U ⊗R U -module summand of T . This implies that U is projective (and of course
finitely-generated) over U ⊗R U .

Let H ′ = Aut(T/U). Then H ≤ H ′ and TH = U = TH
′

so T/U is Galois for both H and H ′.
But the orders of H and H ′ give the rank of T ⊗U T , and therefore H = H ′.
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If H / G, in the case that T = R×G, one can see directly that TH ∼= T×G/H . By faithfully flat
descent, this suffices. . . .�

Theorem 1.20. Let T/R be G-Galois and U an intermediate ring which is separable over R [and
G-strong]. Then there exists an H ≤ G such that U = TH .

Example 1.21. For L/K a G-Galois extension of number fields, OL/OK is a G-Galois extension
of rings if and only if L/K is unramified. For a maximal ideal p, one has a G-Galois extension
(OL)p/(OK)p if and only if L/K does not ramify at p.

Example 1.22. To see that the G-strong condition is necessary, consider the following: Let T =⊕4
i=1Rei be a Z/4-extension where the ei are pairwise orthogonal idempotents with Σei = 1 and

with the generator σ cyclicly permuting the ei. Now let U = R(e1 + e2) ⊕ R(e3 + e4). Then
Aut(T/U) is trivial, but the intermediate ring fixed by the trivial group is T , not U .

2. Units-Picard-Brauer for rings

The results of this section are contained in the AMS memoir of Chase–Harrison–Rosenberg
[CHR65], mostly in the second chapter.

Note. Throughout this section, R will be a fixed commutative ring and ⊗ will denote ⊗R.

2.1. The Brauer group. Throughout this subsection, we consider a (noncommutative) R-algebra
A. We begin with some definitions and a lemma:

Definitions 2.2.

• A is called separable over R if A is projective as a module over Ae. Since A is always finitely
generated over Ae, this is equivalent to the condition that A be a dualizable module over
Ae. By the dual basis lemma, this is equivalent to the condition that the coevaluation

A⊗Ae HomAe(A,Ae)→ HomAe(A,A)

be an isomorphism. To motivate this term, it should be noted that when R is a field, A
being separable over R implies that A is semi-simple over R and remains semi-simple upon
extension of scalars over any field extension of R. When A is also a field, this implies that
A is a separable extension of R in the usual sense for fields [Coh03].
• A is called central over R if the center of A is precisely R; this occurs if and only if the unit

R→ HomAe(A,A)

is an isomorphism.
• A is called faithfully projective over R if both the coevaluation

HomR(A,R)⊗A→ HomR(A,A)

and the evaluation

A⊗Ae HomR(A,R)→ R

are isomorphisms. Note, again by the dual basis lemma, that the coevaluation being an
isomorphism is equivalent to A being finitely-generated and projective as an R-module.
The evaluation map being an isomorphism implies that −⊗R A is faithful in the sense that
M ⊗R A = 0 implies M = 0.

Lemma 2.3 (See e.g. [KO74] or [DI71]). If A is central and separable over R, then the evaluation

HomAe(A,Ae)⊗R A→ Ae

is an isomorphism.
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An R-algebra A satisfying any (and therefore all) of the following conditions is called Azumaya
over R. The Brauer group of R, Br(R), is the group of Morita equivalence classes of Azumaya
R-algebras. The fact that this is a group follows from the definition of Azumaya.

Theorem 2.4. The following are equivalent:

i. A is an invertible (R,Ae)-bimodule and thus Ae is Morita equivalent to R.
ii. A is central and separable over R.

iii. A is faithfully projective over R and the “sandwich map” (unit)

Ae → HomR(A,A)

is an isomorphism.
iv. There is an R-algebra B such that A⊗R B is Morita equivalent to R.

For an extension of commutative rings S/R, the relative Brauer group is the group of Azumaya
R-algebras (up to Morita equivalence) which split upon extension to S:

Br(R,S) = Br(S/R) := ker(Br(R)
S⊗R−−−−−→ Br(S)).

2.5. Rigifying the Brauer group. In this subsection we identify some particular Abelian groups
covering Br(R,S). This is motivated by the following:

Lemma 2.6 (Splitting Lemma). If A/R is Azumaya and S is the maximal commutative sub-R-
algebra of A, then S ⊗Aop ∼= EndS(A) and hence A ∈ Br(R,S).

Idea of proof. First show that if h : B → B′ is a map of Azumaya R-algebras and im(h) contains
its centralizer in B, then h is an isomorphism. Now S ⊗ Aop is Azumaya over S, as is EndS(A),
and there is an obvious map S ⊗Aop → EndS(A). The centralizer of the image is the collection of
endomorphisms given as left-multiplication by an element of S, and thus this map is an isomorphism.

. . .�

Now we describe a collection of Azumaya algebras which are split in a specific way. Let CAlgR
denote the category of commutative R-algebras, and CAlgf.p.R the full subcategory of commutative
R-algebras which are faithfully projective as R-modules. Later, we will also make reference to

the full subcategory of faithfully flat commutative R-algebras, CAlgf.f.R . Let A(S, T ) denote the
following set:

A(S, T ) := {A Azumaya over T with iA : S ⊗ T ↪→ A maximal commutative} /(∼= under S ⊗ T )

So A and B are equivalent in A(S, T ) if there is an isomorphism of algebras commuting with the
given inclusions of S ⊗ T :

S ⊗ T

��						

��555555

A
∼= // B

The sets A(S, T ) can be made functorial: for a map (S, T )→ (S′, T ′) in CAlgf.p.R × CAlgR, we define
a map

A(S, T )→ A(S, T ) by

A 7→ A′ = EndA(S′ ⊗S A)⊗T T ′

∼= EndA⊗TT ′(S
′ ⊗S A⊗T T ′)

where S′ ⊗ T ′ → A′ is defined by (left-mult. ⊗ 1). Note that A′ and A ⊗T T ′ represent the same
class in Br(T ′) [CHR65, II.2.7].

Furthermore, A(S, T ) has a naturally defined product: for A,B ∈ A(S, T ), A⊗T B is an element
of A(S ⊗ S, T ), and the algebra structure of S induces a map A(S ⊗ S, T )→ A(S, T ).
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Example 2.7. Let J be an invertible module over S ⊗ T (finitely-generated projective of rank 1).
Then EndT (J) is an element of A(S, T ). In particular, let D = EndT (S ⊗ T ).

Proposition 2.8. Each A(S, T ) is a commutative monoid with unit D = EndT (S ⊗ T ) and there
is an exact sequence of commutative monoids

Pic(R)→ Pic(S)→ A(S,R)→ Br(R,S)→ 0

Idea of proof. A(S,R) maps to Br(R,S) by the splitting lemma (2.6). . . .�

Corollary 2.9. By a diagram chase, A(S,R) is an abelian group.

Now to close this subsection, we have something like a filtration for A(S,R) and Pic(S):

Definition 2.10.

KA(S, T ) := ker(A(S,R)→ A(S, T ))

KPic(S, T ) := ker(Pic(S)→ Pic(S ⊗ T ))

Proposition 2.11. For S ∈ CAlgf.p.R we take colimits over T ∈ CAlgR: everything splits eventually.

i. Pic(S) = colim
T

KPic(S, T )

ii. A(S,R) = colim
T

KA(S, T )

2.12. Functors to Ab. The following functors to the category of abelian groups are of interest.

• The units functor U : AlgR → Ab
• The Picard functor Pic : CAlgR → Ab
• The Brauer functor Br(R,−) : CAlgR → Ab
• A(−,−) : CAlgf.p.R × CAlgR → Ab

In the previous subsection, we also saw KPic and KA. In this subsection we describe some general
constructions for functors

F : CAlgR → Ab.
First, regard F as a functor of two variables by

F (S, T ) = F (S ⊗ T ).

Now we make the following definitions:

QF (S, T ) = coker(F (T )→ F (S ⊗ T ))

QnF (S, T ) = QF (S⊗n−1, T )(2.13)

= coker(F (S⊗n−1 ⊗ T )→ F (S⊗n ⊗ T ))

Thus we have the following commutative diagram with exact rows:

F (T ) //

��

F (S ⊗ T ) //

ε1
��

QF (S, T )

∆1

��
F (S ⊗ T )

ε0 //

ε0−ε1
��

F (S⊗2 ⊗ T ) //

ε1−ε2
��

Q2F (S, T )

∆2

��
F (S⊗2 ⊗ T )

ε0 // F (S⊗3 ⊗ T ) // Q3F (S, T )
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The maps εi are induced by using the unit map R→ S in the ith factor of S⊗k → S⊗k+1. Note that
the difference of the vertical and horizontal maps to F (S⊗3 ⊗ T ) is the differential in the Amitsur
complex (defined below).

We end this subsection with one more definition:

KF (S, T ) = ker(∆2).(2.14)

Note that ∆2∆1 = 0, so there is an induced natural transformation ∆: QF → KF .

Remark 2.15 (Warning). Although the notation is similar to that for KPic and KA, these are
defined in the previous subsection. These are the original notations in [CHR65], and we do not
know if the similarity is meaningful.

Recall that D = EndR(S) is the unit of A(S,R); D ⊗ T ∼= EndT (S ⊗ T ) is the unit of A(S, T ).

Lemma 2.16. KU(S, T ) ∼= AutA(S,T )(D ⊗ T ).

Idea of proof. For u ∈ U(S⊗2 ⊗ T ) representing a class in KU(S, T ), we have u acting on D ⊗ T
by conjugation. This correspondence gives the isomorphism. . . .�

Lemma 2.17. For S ∈ CAlgf.p.R and T ∈ CAlgS, the induced map

∆: QU(S, T )→ KU(S, T )

is an isomorphism.

Idea of proof. Use the multiplication S⊗3⊗T 1⊗1⊗mult−−−−−−→ S⊗2⊗T to show that ∆ is surjective. . . .�

3. The Amitsur complex for rings

Note. The content of this section comes from Chapter II of [CHR65], written by Chase and Rosen-
berg.

The Amitsur complex is a cosimplicial complex defined by

AC•(S/R) : [q] 7→ S⊗q+1

with the usual cofaces and codegenericies given by unit maps and multiplications. A cochain
complex is constructed from this data by taking alternating sums of the coface maps.

If F is a functor to Ab, we define AC•(S/R;F ) by applying F termwise. The cohomology of the
resulting complex is the Amitsur cohomology AH∗(S/R;F ).

Lemma 3.1. If f, f ′ : T → T ′ are commutative R-algebra maps, then f and f ′ induce chain
homotopic maps on AC•(T/R;F ). Thus if T ′ is a commutative R-algebra retract of T , then
AH∗(T ′/R;F ) is a retract of AH∗(T/R;F ).

Remark 3.2. The definition of the Amitsur complex makes sense for spectra and is discussed in
[Rog08, §8.2]. For A → B an extension of S-algebras (S the sphere spectrum here), A∧B :=
Tot(AC•(B/A)) is a completion of A along the map to B, and this completion agrees with Bousfield
B-nilpotent completion.

Moreover, for G acting on B/A we have h• : AC•(B/A)→ C•(G;B) induced by

h : B ∧A B → F (G+, B)

(F the function spectrum here). If h is a weak equivalence, then h• is codegreewise a weak equiva-
lence and induces a weak equivalence on Tot. We have Tot(C•(G;B)) = BhG and thus the Galois
question can be analyzed by considering the following:

A∧B
Tot(h•)

��A

55jjjjjjj
i

**UUUUUU

BhG
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Now we return to the case of commutative rings.

3.3. Identifying terms. In this subsection, we consider AHn(T/R;GS) for functors GS such as

• FS = F (S ⊗−).
• QFS = QF (S,−).
• KFS = KF (S,−).

In our applications we will take F = U or F = Pic.

Definition 3.4. For a functor F to Ab, we define

AHn(R;F ) = colim
T

AHn(T/R;F )

and

AHF ∗(S) = colim
T

AH∗(T/R,FS).

Theorem 3.5. There is a natural transformation ψ : KA(S, T ) → AH1(T/R;KUS) which is an

equivalence on CAlgf.p.R × CAlgf.f.R .

Idea of proof. Let A ∈ KA(S, T ), so S ⊗R→ A maximal commutative and we have

S ⊗ T

���������

��=======

D ⊗ T
g

∼=
// A⊗ T

(recall that D is the unit in A(S,R)). We define ψ(A) = ū ∈ AC1(T/R;KUS) as follows: Let j be
the composite

j : D ⊗ T⊗2
∼=
g // A⊗ T⊗2

1⊗τ // A⊗ T⊗2
∼=
g−1

// D ⊗ T⊗2
1⊗τ // D ⊗ T⊗2.

Then there is some u ∈ U(S⊗2 ⊗ T⊗2) whose image ū in KU(S, T⊗2) ⊂ Q2U(S ⊗ T⊗2) has the
property that

j(x) = ū x ū−1

(recall Lemma 2.16: automorphisms in A(S, T⊗2) are inner, by elements of KU(S, T⊗2)). Check
that ū is a cocycle. . . .�

Corollary 3.6. For each S ∈ CAlgf.p.R , and each T ∈ CAlgf.f.S , the transformation ψ above induces
a natural isomorphism ψ : KA(S, T )→ AH1(T/R;QUS).

Idea of proof. Use the isomorphism of Lemma 2.17. . . .�

Theorem 3.7. There is a natural transformation ϕ : KPic(S, T ) → AH1(T/R;US) which is an

equivalence on CAlgf.p.R × CAlgf.f.R .

Idea of proof. Let J ∈ KPic(S, T ), so J ∈ Pic(S) and we have

S ⊗ T
g

∼=
// J ⊗ T.

We define ϕ(J) = u ∈ U(S ⊗ T⊗2) = AC1(T/R;US) as follows: Let j be the composite

j : S ⊗ T⊗2
∼=
g // J ⊗ T⊗2

1⊗τ // J ⊗ T⊗2
∼=
g−1

// S ⊗ T⊗2
1⊗τ // S ⊗ T⊗2.

Then there is some u ∈ U(S ⊗ T⊗2) such that

j(x) = ux.

Check that u is a cocycle. . . .�
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Lemma 3.8. The following comparison diagram commutes for S ∈ CAlgf.p.R and T ∈ CAlgf.f.S .

KPic(S, T )

ϕ

��

// KA(S, T )

ψ
��

AH1(T/R;US)
AH1(proj.)// AH1(T/R;QUS)

Remark 3.9. [CHR65] Makes reference to an alternative technique for a unified proof of the previous

two theorems, using various fibered categories over CAlgf.p.R ×CAlgR and analyzing the distinguished
object X0 of each. In each case one has

Aut(X0)(T ) ∼= Aut(X0 ⊗ T )

and a comparison with Hn(T/R,Aut(X0)).

Theorem 3.10.

i. The following sequence is exact.

Pic(R) //

��

Pic(S) //

��

A(S,R) //

��

Br(R,S) //

��

0

AHU1(R) // AHU1(S) // AHQU1(S) // // AHU2(R) // AHU2(S)

ii. As functors of S ∈ CAlgf.p.R , we have natural transformations

U(S)

∼=
��

KPic(S, T ) //

ϕT

��

Pic(S)

colimϕT

��

KA(S, T ) //

ψT

��

A(S,R)

colimψT

��

Br(R,S)

���
�
�

AHU0(S) AH1(T/R;US) // AHU1(S) AH1(T/R;QUs) // AHQU1(S) AHU2(R)

iii. The following sequence is exact.

0→ Br(R,S)→ AHU2(R)→ AHU2(S)

Idea of proof.

i. Exactness of the top row follows from the definition of A(S, T ). Exactness of the bottom
row follows from the long exact sequence in homology induced by the short exact sequence

0→ U → US → QU(S,−)→ 0

for S ∈ CAlgf.p.R .
ii. AHU2(R) is a constant functor of S, and the dashed map follows from existence of the

others by exactness of part (i).

. . .�

3.11. Spectral sequence. First we introduce the bigraded Amitsur complex:

Cp,q(S, T/R;F ) = F (S⊗p+1 ⊗ T⊗q+1).

Then we have a spectral sequence

AHp(S/R;AHTF
q)⇒ Hp+qC•(S, T/R, F )

where AHTF
q(S) = AHq(T/R;FS).

Lemma 3.12. If T is an S-algebra, then

Hp+qC•(S, T/R, F ) ∼= AHp+q(T/R;F ).

Idea of proof. This follows from Lemma 3.1. . . .�
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Taking the colimit defining AH∗(R;F ) over S-algebras T , we have

AHp(S/R;AHF q)⇒ AHp+q(R;F ).(3.13)

Lemma 3.14. Let Ep,qr ⇒ Hp+q be a first-quadrant spectral sequence. Then there is a 7-term exact
sequence

0 // E1,0
2

// H1 // E0,1
2

// E2,0
2

// F1H2 // E1,1
2

// E3,0
2

where F1H2 is the first filtration group.

Corollary 3.15. Taking F = U in the spectral sequences above, we have

0 // AH1(S/R;U) // Pic(R) // AH0(S/R;Pic) // AH2(S/R;U) //

// Br(R,S) // AH1(S/R;Pic) // AH3(S/R;U).

Idea of proof. To identify the first filtration group as Br(R,S), note that the inclusion r : T → S⊗T
induces a commuting map

AH∗(T/R;F )

η

��

r

))SSSSSSSSSSSSSS

H∗C•(S, T/R, F ) // AH∗(T/R;FS).

If T is an S-algebra, then η is an isomorphism and hence ker(r) ∼= F1AH∗(T/R;FS). Passing to col-
imits over S-algebras T gives F1AHn(R;F ) = ker(AHn(R;F )→ AHn(R;FS)). By Theorem 3.10
(iii), this kernel is Br(R,S). . . .�

3.16. Galois extensions.

Theorem 3.17 ([CHR65, Theorem I.5.4]). For S/R G-Galois, we have

H∗(S/R;U) ∼= H∗(G;U(S))

H∗(S/R;Pic) ∼= H∗(G;Pic(S)).

4. Highly structured ring spectra

Spectra are representing objects for generalized cohomology theories on based spaces. Natu-
rally isomorphic cohomology theories correspond to homotopy equivalent spectra, and cohomology
theories with product structures correspond to ring spectra. To develop the Galois theory of ring
spectra, it is necessary to work in a category of highly-structured spectra: a closed monoidal cat-
egory with a notion of homotopy such that its homotopy category is equivalent to the category
of spectra (cohomology theories). Monoid objects in such a category are highly-structured ring
spectra, and there is a natural theory of module spectra over these ring spectra, etc. There are
a number of different constructions which give categories of highly-structured spectra, but we will
not say more about that here.

4.1. Non-Faithfulness of Galois Extensions.

Definition 4.2. An extension of rings A→ B is faithful if, for any A-module M ,

M ∧A B ' ∗ ⇒ M ' ∗

The following example is due to Ben Wieland, although the fact that this is a Galois extension,
and the proposition with which to prove it is non-faithful, are both contained in [Rog08].
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Proposition 4.3. A Galois extension A → B is faithful if and only if the topological norm below
is an equivalence.

(B ∧ SadG)hG
Norm

'
// BhG // BtG

Idea of proof. If Norm is an equivalence, let M be such that M ∧A B ' ∗. Then

M ∧A (B ∧ SadG)hG
Norm

'
// M ∧A BhG 'M ∧A A.

But smashing with M commutes with homotopy orbits, so the first term is

M ∧A (B ∧ SadG) ' (M ∧A B ∧ SadG) ' ∗.
Now suppose A→ B is faithful; we see that B ∧A Norm is an equivalence: We have

B ∧A (B ∧ SadG)hG
B∧ANorm //

'

B ∧A BhG

'

(B ∧A B ∧ SadG)hG

'

B

(Map(G+, B) ∧ SadG)hG
(1) // Map(G+, B)hG

and the map (1) is always an equivalence . . .�

Example 4.4. EG→ BG induces

Map(BG+, HFp)→Map(EG+, HFp) ' HFp.
and ([Rog08]) this extension is G-Galois if and only if G acts nilpotently on Fp[G] (e.g. if G is a
finite group). The Tate spectrum in this case has

π∗HFtGp = Ĥ−∗(G;Fp) 6= 0

where Ĥ is Tate cohomology and the first equality holds because G acts trivially on HFp '
Map(EG+, HFp).

Baker and Richter [BR10] have shown that extensions

EBGn = Map(BG+, En)→Map(EG+, En) ' En
and

Map(BG+,K(n))→Map(EG+,K(n)) ' K(n)

are faithful extensions, although the second is a non-commutative extension and is not Galois (in
the associative setting) and the first fails to be Galois in many cases.

5. Morava K-theories and Lubin-Tate spectra

5.1. Motivation. The purpose of this subsection is to give some motivating facts about the deep
connection between formal group theory and calculations in stable homotopy. It is unlikely that it
will get typed up. The main ideas were the following; taken mostly from [Rav92]. Jacob Lurie has
a collection of course notes [Lur10] which are quite nice.

Definition 5.2. A self-map f : ΣdX → X can be composed with appropriate suspensions of itself.
A self-map is nilpotent if some iterate is null-homotopic; otherwise it is periodic.

Theorem 5.3 (Nilpotence). MU∗ detects nilpotence.

Corollary 5.4. π∗S consists entirely of nilpotent elements for ∗ > 0.
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Theorem 5.5. Description/characterization of Morava K(n): generalizations of mod p complex
K-theory for height n. K(n)∗ = Z/p[vn, v−1

n ] with |vn| = 2(pn − 1).

Definition 5.6. X has type n if n is minimal such that K(n)∗(X) 6= 0. If X ' pt., then X has
type ∞.

Theorem 5.7 (Periodicity). Spaces of finite type n have periodic self-maps which are isomorphisms
on K(n)∗, and these have a certain asymptotic uniqueness. Such a map is called a vn-map (think
of multiplication by vn).

Remark 5.8. Periodic self maps give rise to infinite families of non-trivial elements in π∗S. These are
constructed by looking at bottom-cell inclusion and top-cell collapse on the space involved. Early
examples were constructed by Toda, Mahowald, Adams. These may be the well-known “greek
letter elements”.

5.9. Bousfield classes and chromatic convergence.

Definition 5.10. A thick subcategory contains the zero object and is closed under fibers/cofibers
and retracts.

Example 5.11. The subcategory T≥n of finite p-local CW complexes of type ≥ n is a thick
subcategory of T , the category of finite p-local CW complexes.

Theorem 5.12 (Thick Subcategory). Every thick subcategory of T is one of the T≥n.

Remark 5.13. This also gives a classification of those thick subcategories of p-local spectra which
are generated by p-local finite spectra under colimits.

Definition 5.14 (Bousfield classes). 〈E〉 = 〈F 〉 if LE ' LF .

Proposition 5.15.

〈E(n)〉 = 〈En〉 =

n∨
i=0

〈K(n)〉

Theorem 5.16 (Chromatic convergence). Localization with respect to E(n) gives a tower of ap-
proximations, and the (homotopy?-)limit of this tower is the identity functor.

5.17. Formal group laws.

Definition 5.18. A formal group over a ring k is a connected, commutative, cocommutative, 1-
dimensional, topological Hopf algebra A over k. This collection of adjectives imples that A ∼= kJxK.
A formal group law over k is a specified isomorphism (called a coordinate) kJxK

∼=−→ A . The Hopf
algebra structure determines a power series in two variables, F (x, y) ∈ kJx, yK which satisfies
commutativity, associativity, and a unit condition. Such a power series is called a formal group
law.

Theorem 5.19. There is a universal formal group law U over the Lazard ring, L, and (L,U)
corepresents the formal-group-laws functor.

Theorem 5.20. The spectrum MU is a “topological lift” of L: MU∗ ∼= L, and MU∗ carries a
natural formal group law induced by the multiplication on CP∞. This natural formal group law is
the universal formal group law.

Proposition 5.21. For any formal group law F , we have

[p]F (x) ≡(mod p) a · xp
n

+ · · ·
for some coefficient a and some number n.
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Definition 5.22. This value of n is called the height of F .

Remark 5.23. The height of a formal group law and the type of a spectrum are closely related
quantities. The coefficient of xp

n
in p-series of the universal formal group law is closely related to

the vn of the Morava K(n).

Theorem 5.24. Over F̄p, two formal group laws are isomorphic if and only if they have the same
height.

The Lubin-Tate ring is

(En)0 = WFpnJu1, . . . , un−1K(5.25)

with |ui| = 0. This ring carries a formal group law which is the universal deformation of the Honda
formal group law (the unique formal group law over Fpn whose p-series mod p is precisely xp

n
).

Theorem 5.26 (Hopkins-Miller). There is a highly-structured ring spectrum En and a map of
highly-structured ring spectra MU → En which induces the formal group law described above on

(En)∗ = WFpnJu1, . . . , un−1K[u±1] |u| = 2.

The spectrum En has an action of the extended Morava stabilizer group Gn = Sn o Cn through
maps of highly-structured spectra.

5.27. Deformations. This section follows [Rez98].

Definition 5.28 (Deformations). Let (k,Γ) be a field of characteristic p and a formal group law
over the field. A deformation of (k,Γ) to a complete local ring B is (G, i) where G is a formal
group law over B and i is an inclusion

k
i−→ B/m

such that i∗Γ = π∗G. (π : B → B/m.) A morphism

(i1, G1)→ (i2, G2)

is determined by the following: i1 = i2 and an isomorphism of formal group laws f : G1 → G2 such
that π∗f is the identity. This is sometimes called a ?-isomorphism.

Here is a picture of the groupoid of deformations of (k,Γ) to B. It is a pull-back square of
groupoids:

Def(k,Γ)(B) //

��

fgl(B)

��∐
i:k→B/m

{Γ} //
∐

i:k→B/m

fgl(k) // fgl(B/m)

Theorem 5.29 (Lubin-Tate). If Γ is a formal group law of height n over k (field of characteristic
p), and (i, G) is a deformation complete local ring B, then

π1(Defk,Γ(B)i, (G, i)) = {1}

π0(Def(k,Γ)(B)i) = m×(n−1)

where Def(k,Γ)(B)i denotes deformations of the form (G, i) for i fixed.
Furthermore, there is a complete local ring E(k,Γ) and an isomorphism

k
∼=−→ E(k,Γ)/m

with a formal group law F(k,Γ) over E(k,Γ) such that (F(k,Γ), id) is a universal deformation (de-
scribed below).
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Remark 5.30. π0 denotes the set of connected components, and π1 is the automorphism group of
the base point.

Saying that (F(k,Γ), id) is a universal deformation means that for any complete local ring B there
is a canonical map iE : E(k,Γ) → B and E(k,Γ) together with its formal group law corepresents
the functor

B 7→ π0(Defk,Γ)(B)iE .

Here is a picture:

E(k,Γ)
∃! φ //____

��

B

��

F
� //___

_

��

φ∗F
_

��

G
�oo

_

��
k

iE // B/m Γ
� // i∗Γ π∗G

When k = Fpn and Γ is the Honda formal group law ([p](x) ≡mod p xp
n
), then

E(Fpn ,Hondan) = WFpnJu1, . . . , un−1K = (En)0

Definition 5.31 (Witt vectors). WFpn denotes the Witt vectors of Fpn . As ring, this is Zp[ζ]
where ζ is a primitive (p−1)st root of 1. It is the ring of integers in the Galois extension Qp[ζ]/Qp.

Definition 5.32 (Morava stabilizer group). Sn is the group of formal group law automorphisms
of the height-n Honda formal group law over Fpn .

Note. The Johnson-Wilson spectrum, E(n) is closely related to En; E(n)∗ = FpnJu1, . . . , un−1K[u±1]

5.33. Galois extensions.

Theorem 5.34 (Devinatz-Hopkins [Rog08]).

i. For closed subgroups H ⊂ K ⊂ Gn = Sn n Cn with H /K and [K : H] <∞,

EhKn → EhHn

is a K(n)-local K/H-Galois extension.
ii. In particular, if K is finite,

EhKn → En

is K(n)-local K-Galois.
iii. If U is an open normal subgroup of Gn (hence of finite index), then

LK(n)S → EhUn

is K(n)-local Gn/U -Galois. (EhGn
n ' LK(n)S)

iv. Taking a descending sequence of open normal subgroups whose intersection is trivial, we
have a K(n)-local profinite Galois extension with group Gn:

LK(n)S → En.
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