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Functions

Some of this is covered (better) in the first two sections of Lang, chapter 13.
But the parts about binomial coefficients and rational functions aren’t there.

Definition of function

A function has a domain and a range. A function from domain D to range R is
an association which assigns, to each member of D, a member of R. If we have
a function named f , we write f(x) (say “f of x”) for the element of R that is
assigned to x. We write

f : D → R

to indicate that f is a function from D to R. We also say x is the input and
f(x) is the value of f at x or the output of f at x. We write

x 7→ f(x)

to indicate that the function f assigns the element x ∈ D to the element f(x) ∈
R.

Most of the functions we encounter will be functions from R to R, but some-
times our functions will be defined only for subsets of R, like the subset of
positive numbers, or the subset of nonzero numbers. Later, we might encounter
some functions whose domains and ranges are things other than numbers, but
numbers are a good place to start.

Examples

The function which assigns each number x to its square, x2, is the function

x 7→ x2.

The function which assigns each number x to the number 3 is a constant function

x 7→ 3.

The function which assigns to each number t the line through (0, 1) with slope
t is a function from R to the set of all lines through (0, 1).

Remark 1. If, as in the first two examples, we can express the values of a
function in terms of some arithmetic on the inputs, then we might simply write
something like “Consider the function g(x) = x2 − 1” to mean that g is the
funciton which assigns x2 − 1 to the input x. It’s easy to confuse the outputs,
g(x), with the function itself, g. One way to keep them separate is to think of g
as a machine, and g(x) are the things the machine produces.
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Polynomial functions

A polynomial function is a function of the form

x 7→ anx
n + · · ·+ a1x + a0

for some natural number n ≥ 0 and some constants a0, . . . , an. The numbers ai
are called the coefficients and the number n is called the degree.

Example 1.

• g(x) = x2 + 1 is a polynomial of degree 2, with coefficients a2 = 1, a1 = 0,
and a0 = 1.

• p(x) = 3x3 − 2x− 4 is a polynomial of degree 3 with coefficients 3, 0, −2,
and −4.

• The constant funciton k(x) = 17 is a polynomial of degree 0.

• The function f(x) = (x− 3)2 is a polynomial, even though we didn’t write
it in polynomial form. It has degree 2; and its coefficients are 1, −6, and
9.

• The function r(x) =
√
x is not a polynomial. This means that it can’t

be written in the polynomial form above, and it’s something that requires
explanation. If you know about derivatives, it’s easy to use them to prove
that

√
x isn’t a polynomial...

Making new polynomials

Here’s an interesting and useful fact about polynomials: The sum or product
of any two polynomials is another polynomial. Why is this? The distributive
property! Likewise, a constant multiple of a polynomial is a polynomial.

Note, however, that the quotient of two polynomials is not necessarily a poly-
nomial. For example, the function

f(x) =
1

x2 + 1

is not a polynomial. Again, you can see this easily by considering its derivatives,
if you know about those.

Here’s an interesting consequence of these observations: we know the function
(x+1)5 is a polynomial, even if we don’t know what its coefficients are. Likewise,
(x2 − 3)6(x3 + x2 + x + 1)8 must be a polynomial.
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Interlude: the binomial theorem

The polynomials (x + a)n are special and important, and there’s actually a
formula for their coefficients. They are called the binomial coefficients because
they come from a power of a two-term sum. Before we state the theorem, let’s
make a few observations:

• (x + a)0 = 1, and (x + a)1 = x + a

• (x + a)2 = x2 + 2ax + a2

• (x + a)3 = x3 + 3ax2 + 3a2x + a3

• (x + a)n = xn + · · ·+ an.

• all the middle terms of (x+a)n are of the form B ·an−kxk for some number
B that depends on n and k.

• xn = a0xn and an = anx0.

The binomial theorem gives a formula for all these numbers B, and it’s pretty
cool.

Theorem 1. The coefficient of xkan−k in the polynomial expression for (x+a)n

is given by the binomial coefficient(
n

k

)
=

n!

k!(n− k)!
.

The expression here is very exciting because it uses the factorial symbol! The
factorial is a function written with an exclamation point, and it is defined by

n! = n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1.

For example,

• 1! = 1

• 2! = 2

• 3! = 3 · 2 · 1 = 6

• 4! = 4 · 3! = 24

• 5! = 5 · 4! = 120

• 6! = 6 · 5! = 720
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Now here’s a special note: 0! is defined to be 1, not 0. There are so many
good reasons for this, but they will digress us, so for now I’ll just say that this

convention makes the formula for

(
n

n

)
and

(
n

0

)
correct (both are 1).

Exercise 1 Use the binomial formula to compute

(
4

k

)
for k = 0, 1, 2, 3, 4, and

check that these are the correct coefficients for (x + a)4.

Choices and Pascal’s triangle

We have seen (or will see) these binomial coefficients in another context: when
we learn about probability, we learn that we need to count all the ways of
choosing k things from among n – for example, all the ways of choosing a k-
item lunch out of a bag that contains n food items. It turns out that the number

of different lunches which can be made this way is precisely the number

(
n

k

)
.

For example, there are 6 ways to choose 2 items from among 4, and indeed(
4

2

)
= 6.

These numbers are sometimes written in a triangle, called Pascal’s triangle, and
they have an amazing pattern!

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 · · ·
1 8 28 · · ·

Each number is the sum of the two numbers above it!!

Exercise 2 Use the formula for binomial coefficients to prove that they fit the
pattern in Pascal’s triangle. That is, prove that the expressions(

n

k

)
+

(
n

k + 1

)
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and (
n + 1

k + 1

)
are equal for all natural numbers n and k with 0 ≤ k ≤ n.
Hint: Try some specific numbers for n and k if you want to get a feel for how this

works in general – it just requires a little algebra to add fractions.

Proving the binomial theorem

The binomial theorem says that the coefficients of (x + 1)n are given by the

numbers

(
n

k

)
. To explain why this is, we can use either one of two ideas.

• Idea 1: Explain why the coefficients of (x + a)n have the same pattern as
in Pascal’s triangle, by considering (x + a)n+1 = (x + a)n · (x + a).

• Idea 2: Explain why the coefficient of an−kxk in (x + a)n must be the
number of ways of choosing k things from among n, and then in some

other class explain why this number of choices is given by

(
n

k

)
.

Both of these are good ideas, and I think we’ll discuss both of them in class.

Roots and factors of polynomials

Returning to general polynomials, there are a few more things to say and they
all have the following theme: the arithmetic of polynomials is very very much
like the arithmetic of whole numbers.

• Theorem: If f is a polynomial and has a root at x = c, then f factors
as f(x) = (x − c) ∗ g(x) for some polynomial g with degree smaller than
degree of f

• Corollary: If f is the zero polynomial, then all the coefficients of f are
zero.

• Corollary: If f has two different expressions as a polynomial, then all the
coefficients of the two expressions must be equal.

• Compare: digits of a number v.s. fractions
Two base-ten whole numbers are equal if and only if they have the same
digits. On the other hand, fractions can be equal (equivalent) even though
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their numerators and denominators are different. Polynomials are more
like whole numbers than fractions. In fact, polynomials are like numbers
written in base x!!! (That’s a cool idea.) If you wrote algorithms for
the coefficients of adding, subtracting, and multiplying polynomials, they
would be the algorithms for place value arithmetic!

• Euclidean algorithm (polynomial long division): This is the thing that
allows us to tell when a quotient of two polynomials is a polynomial! It is
very very much like long division.

Rational functions

A quotient of polynomials is called a rational function, for the same reason that
a quotient of whole numbers is called a rational number. As we know, sometimes
a fraction can actually be simplified to a whole number, and sometimes not.

Exercise 3 Use polynomial long division to decide whether or not the following
quotients are actually polynomials, or not.

• x3+3x2+3x+1
x+1

• x4+4x2+1
x+1

• x4−x2−2x−1
x2+x+1

Now we come to another cool connection with elementary arithmetic, geometry,
and calculus. As you know, one of the most exciting uses of long division (for
numbers) is to find the decimal expansion for fractions such as 1

3 or 1
9 . The

same is true for polynomials!! To do this, we should first understand what
the “decimal places” are for polynomials: They are simply the negative integer
powers, x−1, x−2, etc.

Exercise 4 Use long division to show that the rational function 1
x−1 is equal to

the series x−1 + x−2 + x−3 + · · · . Verify that, when you substitue x = 10, you
get the correct expression for 1

9 . When you substitute x = 4, you get the correct
expression for 1

3 . In fact, when you substitute any number x > 1, you get the
correct expression!!
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You can rearrange the identity

1

x− 1
= x−1 + x−2 + x−3 + · · ·

into a more familiar form by making the replacement r = 1
x . Then the right

hand side becomes r + r2 + r3 + · · · , and is defined for |r| < 1. The left hand
side becomes 1/( 1

r − 1) = r
1−r , and we have

r
1−r = r + r2 + r3 + · · ·
1

1−r = 1 + r + r2 + · · ·

for |r| < 1. We’ve seen this before, when we discussed similarity in geometry,
scaling by a factor of r. Wow! If you’ve seen Taylor series in calculus, this is
the Taylor series for 1

1−r . Double wow!!

Scaling and the geometric series

Imagine you start with a square of side length 1, and scale it by a factor of r,
for some r < 1. Then do this again and again, stacking the squares next to
eachother so you get something like this:

If you have infinitely many squares, then their total length is 1+r+r2+r3+· · · .
But also the whole picture can be scaled by a factor of r, and, if you have
infinitely many squares, then you’ll get all the squares except the first one. So
whatever the total length, L, might be, it must solve the following equation:
1 + rL = L. Therefore we have

L = 1 + r + r2 + · · ·
L = 1

1−r

and this recovers the formula for the geometric series above.
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The equivalent formulation r
1−r = r + r2 + r3 + · · · is useful for explaining why

.9 = 1 (take r = 1
10 and multiply by 9) or Zeno’s paradox 1

2 + 1
4 + 1

8 + 1
16 + · · · = 1

(take r = 1
2 ).

Taylor series

If you haven’t yet seen Taylor series, let’s leave it at this: Series are another
class of functions that includes polynomials, but also sums with infinitely many
terms, as above. Lots of interesting functions that aren’t polynomials are in
this larger class. It includes all rational functions, square roots, trigonometric
functions, exponential functions, and logarithms. We have seen how to use long
division to express rational functions as series, and in calculus you will learn
about the rest of these.

One has to be a little more careful with series than with polynomials, because
they generally aren’t defined for all values of the input variable, but expressing
functions as series is really a powerful way to understand functions.
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