Hyperbolas

We discuss two different equations for hyperbolas, and how they are related by rotation. This gives us some practice using matrices, algebra, and a little more experience with conic sections. This content appears in Lang $\S \S 12.4$ and 12.5.

Introduction

There are two different equations that describe hyperbolas. The first is of the form

$$
x y=k
$$

for some constant k. The classic $x y=1$ is shown below, and this can be expressed equivalently as our old friend $y=\frac{1}{x}$, which lead us to discover the logarithm and exponential functions.

$x y=1$

The second way of describing hyperbolas is with an equation like

$$
x^{2}-y^{2}=a^{2}
$$

for some constant a. This number a is called the semi-major axis, and it's sort of like the "radius" of an "imaginary ellipse". To see what I mean, recall that the equation for an ellipse is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

and the numbers a and b are the semi-major and semi-minor axes. The ellipse crosses the x and y axes at $(\pm a, 0)$ and $(0, \pm b)$. When $a=b$, the ellipse is a circle! A hyperbola is the same kind of equation, but with $b=i a$, an imaginary number.

This way of presenting hyperbolas shows that they have all kinds of interesting geometry, which is called hyperbolic trigonometry, because the geometry of the circle is called trigonometry.

Rotation by $\pi / 4$

Now the main question I'd like to answer is this: How do we know that these two equations describe the same kind of shape? The answer, simply put, is that one is a rotation by 45° of the other. But how do we know that? To explain, we will need to understand rotation a little more.

Rotation by any angle preserves vector sum, so it is a linear transformation. That means it can be described by a matrix. We will use this to analyze the two equations for hyperbolas.
Suppose we want to rotate by an angle t. To express this as a matrix, we need to know where the two basis vectors

$$
e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}
$$

go after rotation.

The circle $x^{2}+y^{2}=1$ will help us understand rotation by t.
Recalling our experience with polar coordinates, we realize that rotation by and angle t sends e_{1} to $(\cos (t), \sin (t))$ and sends e_{2} to $(-\sin (t), \cos (t))$. Therefore the matrix for rotation by t is

$$
R_{t}=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) .
$$

Exercise 1 Show that, by the Pythagorean Theorem, this is a matrix of determinant 1

Examples

Rotations by $\frac{\pi}{2}=90^{\circ}$ and $\pi=180^{\circ}$ are given by

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

Exercise 2 Use triangle geometry to understand the matrix for rotation by 45°.

Rotating the hyperbola

In the previous exercise, we find that rotation by $\frac{p i}{4}$ (i.e., 45°) is given by the matrix

$$
R_{\pi / 4}=\left(\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

Now to understand how this matrix transforms a hyperbola such as

$$
x^{2}-y^{2}=2,
$$

we have two steps.

Exercise 3

(a) Write a general expression for what happens when we apply rotation by $\frac{\pi}{4}$ to a point (x, y).
(b) Suppose that the point (x, y) was a point on the hyperbola; use that to write an equation for the new points $(u, v)=R_{\pi / 4}(x, y)$.
Hint: See if $u v$ simplifies to a pleasant expression

Exercise 4 Consider the hyperbola $x y=9$. Rotating this by $\frac{\pi}{4}$ gives another hyperbola. What is its equation? If you like, sketch a picture on the axes below!

