2019-03-27 10:47:44 -04:00 Hyperbolas

Hyperbolas

We discuss two different equations for hyperbolas, and how they are related by
rotation. This gives us some practice using matrices, algebra, and a little more
experience with conic sections. This content appears in Lang §8§12.4 and 12.5.

Introduction

There are two different equations that describe hyperbolas. The first is of the
form
zy =k

for some constant k. The classic xy = 1 is shown below, and this can be
expressed equivalently as our old friend y = %, which lead us to discover the
logarithm and exponential functions.

zy =1 2 —y? =2

The second way of describing hyperbolas is with an equation like

for some constant a. This number a is called the semi-major axis, and it’s sort
of like the “radius” of an “imaginary ellipse”. To see what I mean, recall that
the equation for an ellipse is

2 2
x y
;+b7—1,

and the numbers a and b are the semi-major and semi-minor axes. The ellipse
crosses the z and y axes at (£a,0) and (0,£b). When a = b, the ellipse is a
circle! A hyperbola is the same kind of equation, but with b = ia, an imaginary
number.

This way of presenting hyperbolas shows that they have all kinds of interesting
geometry, which is called hyperbolic trigonometry, because the geometry of the
circle is called trigonometry.
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Rotation by 7/4

Now the main question I'd like to answer is this: How do we know that these
two equations describe the same kind of shape? The answer, simply put, is that
one is a rotation by 45° of the other. But how do we know that? To explain,
we will need to understand rotation a little more.

Rotation by any angle preserves vector sum, so it is a linear transformation.
That means it can be described by a matrix. We will use this to analyze the
two equations for hyperbolas.

Suppose we want to rotate by an angle t. To express this as a matrix, we need
to know where the two basis vectors

() o)

go after rotation.

The circle 22 4+ y? = 1 will help us understand rotation by ¢.

Recalling our experience with polar coordinates, we realize that rotation by and
angle t sends e; to (cos(¢),sin(¢)) and sends es to (—sin(t),cos(t)). Therefore
the matrix for rotation by t is

R, - <c9s(t) sin(t)> _

sin(t)  cos(t)

Exercise 1 Show that, by the Pythagorean Theorem, this is a matrix of deter-
minant 1

Examples

Rotations by § = 90° and 7 = 180° are given by

(o) = (54
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Exercise 2 Use triangle geometry to understand the matrix for rotation by 45°.

Rotating the hyperbola

In the previous exercise, we find that rotation by %i (i.e., 45°) is given by the
matrix

2 V2

Now to understand how this matrix transforms a hyperbola such as
2 —y? =2,
we have two steps.

Exercise 3

(a) Write a general expression for what happens when we apply rotation by
T to a point (z,y).

(b) Suppose that the point (x,y) was a point on the hyperbola; use that to
write an equation for the new points (u,v) = Ry /4(x,y).
Hint: See if uwv simplifies to a pleasant expression

Exercise 4 Consider the hyperbola zy = 9. Rotating this by § gives another
hyperbola. What is its equation? If you like, sketch a picture on the axes below!
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