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The logarithm and exponential functions

See also: Lang chapter 13.

Review

Functions

To understand the relationship between exponentials and logarithms, we need
to recall a few general facts about functions.

e graphs: a function has a graph; a curve in the plane is the graph of a
funciton if and only if it passes the “vertical line test”

e one-to-one: a fuction is one-to-one if f(a) = f(b) occurs only when a = b;
a function is one-to-one if and only if its graph passes the “horizontal line
test”

e Inverses: Some functions have inverses which “undo” the function. Some-
times an inverse is only “one-sided”

e Graphs and inverse functions: If f has an inverse, the graph of the inverse
is obtained by reflecting the graph of f across the line y = z. Note that
this swaps horizontal and vertical lines.

e A function has an inverse if and only if it is one-to-one. Functions which
are not one-to-one can be restricted to regions where they are, and given
inverses there. Different restrictions give different inverses.

Exponent rules

For any real (or complex) number a, and any natural number n > 0, we define
a"™ = a-a---a (multiplied n times). For n = 0, we define a” = 1. This operation

has the property that

for any natural numbers m and n.

Now just as we extend the natural numbers, N, using arithmetic rules to discover
the integers, Z, and then the rational numbers, Q, we can extend the meaning
of exponents to understand the meaning of a? for every rational number q.
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Exercise 1 Use the exponent rule and the axioms for additive inverses to prove

that, for n > 0, the exponent a~" must mean a%

Exercise 2 Use the exponent rule and the axioms for multiplicative inverses to
prove that, for any integer n, the exponent a'/™ must mean Va.

Note that these don’t give us a conceptual meaning of exponents, beyond the
exponential rule. Also, there isn’t an arithmetic we can use to extend exponents
to irrational real numbers. But there is a way to do it without arithmetic! It is
based on the Least Upper Bound property of the real numbers, which implies
that the real numbers are precisesly those which can be reached as the limit
of a sequence of rational numbers. So to understand a” for irrational numbers
x, we use rational approximations (e.g. decimal approximations, or others).
Equivalently—and importantly—you could think of graphing a® for just the
rational numbers z, and then complete the function a® by filling in the holes in
the graph!

For a conceptual meaning of exponentials, we need a little more depth of un-
derstanding from the sections below.

The exponential functions

e definition of exp,(r) for rational r
e properties of exp

e example: doubling

The logarithm functions

e inverse to exponentials

e graph; properties of logarithms (the logarithm rule)

The natural logarithm: The area under the curve
1/x

In this section, we describe a very clever observation: The area under the curve
Y= % satisfies the logarithm rule! Here’s what I mean:
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Definition 1. For each real number t > 0, let A(t) be the area under the graph
of y = % fromxz=1tox=t. (If0 <t <1, count this as negative area.)

Theorem 1. For any two real numbers s,t > 0, we have

A(st) = A(s) + A(t).

If you know about definite integrals, this theorem can be proved easily using a
change of variables, letting u = st, so du = sdt. But this change of variables
obscures a very simple geometric argument, which I’ll describe now.

This becomes slightly easier to discuss if we expand the definition of A so that
A(a,b) denotes the area under y = 1/x between z = a and x = b (positive
if @ < b, negative if b < a, and zero if ¢ = b). Then our earlier definition is

A(t) = AL, t).

Now it’s clear, because area is additive, that A(1,st) = A(1,s) + A(s, st). So
to prove the theorem we just need to explain why A(s, st) should be the same
number as A(1,t). For example, why should A(3,6) = A(1,2)?

As we will see, this all comes down to the very simple fact that 5 = %! How?
First, recall that scaling a shape in the vertical direction multiplies its area by
the scale factor. Same for scaling in the horizontal direction. And to connect
with graphs, note that multiplying a function by a number scales its graph.
Also, multiplying the input of a function scales its graph.

In general, the graph of s f(z) is scaled vertically by a factor of s, while the

graph of f(s-x) is scaled horizontally by a factor of % For example, the graphs

of f(z), 2f(x) and f(2x) are shown below, where f(z) is the cubic polynomial
3
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Graphs of y = f(z) (blue); y = 2f(x) (green); and y = f(2z) (red).

Now what does this mean for our area function? Well, the area under 2f(x) on
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some interval [a, b] will be 2 times the area under f(x) (on that same interval).
Likewise, the area under f(2z) on [%, 2] will be % times the area under f(z) on
the interval [a,b]. We have to change the interval because, in order to get 2x

ranging over the same interval [a, b], we have to restrict x to the interval [, %]
Both of these multiplications scale the graph, and hence the area, in one di-
rection or the other (one vertical, one horizontal). Now here’s a cool fact: this

means that the area under 2f(2z), on the interval [, 2] will be ezactly the
same as the area under f(x) on the interval [a,b]. And of course this works

more generally: for any s > 0, the area under s f(sz) on the interval [, 2] will
be the same as the area under f(x) on the interval [a,b]. Note that, in general,
the function s f(sz) is pretty different from f(x) — it is stretched by a factor of
s vertically, and compressed by a factor of % horizontally. But these changes

balance out to preserve area (from an original interval to a compressed one).

The previous paragraphs tell us that the area under f(z) between s and st
(that is, the interval [s, st]) will be the same as the area under s f(sx) betweeen
1 and ¢ (that is, the interval [1,¢])!! Now we come to the special fact about the
function f(z) = L: for this function, s f(sz) is exactly the same function as the
original f(z). And this tells us that the area A(s, st) is exactly the same as the
area A(1,s)!

Lastly, let’s point out that the same discussion we’ve had would apply equally
well to f(z) = 2, or f(z) = 2, or any other constant times 1. These give
lots of different functions that all satisfy the same logarithm rule, and the most

basic—most natural—is the one we get from %

Graphs of y = 1/z (blue) and y = 3/z (green).
The area under y = 1/x between 1 and 6 is shaded.

Definition 2. The natural logarithm, In(z) is defined to be the function A(x)
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above.

Now, of course, we have a question: what is the base of the natural logarithm?
It is the number e such that In(e) = 1. Said differently, it is the number e
such that the area under % between 1 and e is precisely 1. This number is
called Euler’s number. Euler was one of the first mathematicians to understand
the importance of this number, and used it some of his work in the 1720s. It
was discovered about 50 earlier, by one of the Bernoulli brothers (Jacob) in a
different context (studying compound interest).

Exercise 3 Use the area definition of In to prove that 2 < e < 4.

The natural exponential

e The natural exponential is the one which is inverse to the natural loga-
rithm.

e A conceptual meaning of exponentials: functions whose rate of change is
proportional to their values. (This can be said more clearly with deriva-
tives.) The natural exponential is the one whose constant of proportion-
ality is 1.
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