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Matrices

Lang chapter 17.

The geometry of systems of linear equations.

• Recall systems of linear equations and direct method of solution

• Recall some systems have no solutions, some have many, but generally a
system has exactly one solution

When we discussed systems of linear equations, we observed that each equation
defines a line, and a solution to the system is the intersection of the lines. For
example the system

3y + 2x = 3

4y − 3x = 8

can be visualized as the intersection of the two lines below (left).
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y

Another, more abstract way to think about this is to define a function from R2

to R2 as f(x, y) = (3y + 2x, 4y − 3x). This function sends the axes to the lines
indicated at right, and the red/blue lines to the indicated horizontal/vertical
lines.

Linear transformations

• Observe that a system of expressions defines a function (transformation)

• When the system is linear, the transformation is linear
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• Plan: analyze linear transformations; develop a systematic solution to all
systems of linear equations

A function f : R2 → R2 is called linear if it has the following properties:

• For any two vectors A and B, f(A + B) = f(A) + f(B).

• For any real number r and vector A, f(rA) = rf(A).

Exercise 1 Show that these properties have the following consequences:

• f(A−B) = f(A)− f(B).

• f(0, 0) = (0, 0).

• f(x, y) = xf(1, 0) + yf(0, 1).

The two vectors (1, 0) and (0, 1) are called basis vectors because, for any linear
function f , the entire function is determined by its value on these two points.
In the example of a linear function given by two linear expressions

ax + by

cx + dy

we have f(x, y) = (ax + by , cx + dy).

Exercise 2 Check that the function f defined by two linear expressions above
is indeed linear.

Note that f(1, 0) = (a, c) and f(0, 1) = (b, d). Therefore we can recover the
coefficients of the linear expression by the values of f on the two basis vectors.

The matrix for a linear funciton f is a grid of numbers, where the numbers are
the coordinates of the values of f on basis vectors. In the example above, this
is the following: (

a b
c d

)
.

To compute the value of f on any vector (x, y), we use matrix multiplication

with the column vector

(
x
y

)
.
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Matrices as linear transformations

• Matrices (grids of numbers)

• Every linear transformation is given by a matrix

• Matrix arithmetic and geometry

• Examples: Dilation, rotation, combinations thereof

Determinants arise from matrices

• Computing determinants

• Determinants determine solutions!

• Inverting matrices: reversing a linear transformation

The determinant of a 2x2 matrix

A =

(
a b
c d

)
.

is the number det(A) = ad − bc. This number is important for the following
reasons.

Proposition 1 (Determinant in multiplicative). For any two matrices A and
B,

det(AB) = det(A) det(B).

Proposition 2 (Determinant measures area). Let (a, c) and (b, d) be the column
vectors of a matrix A. Let P be the parallelogram defined by the origin, these
two vectors, and their sum. Then the area of P is given by |det(A)| = |ad− bc|.

Exercise 3 Use the following picture and algebra to prove the previous propo-
sition

(a, c) (a + b, c + d)

(b, d)
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Exercise 4 Consider the possible options for where (a, c) and (b, d) might be in
the plane. What orientation(s) of the parallelogram correspond to det(A) being
positive, and what orientation(s) correspond to det(A) being negative?

Theorem 1. The matrix A has an inverse if and only if its determinant det(A)
is nonzero. In this case, the inverse of A is given by

1

det(A)

(
d −b
−c a

)
.

Proof It’s easy to check that, if det(A) is nonzero, the given formula defines
an inverse. The converse—that A is invertible only if det(A) is nonzero—follows
from the proposition above. If det(A) = 0, then the parallelogram determined
by the columns of A has zero area, so the two columns lie on the same line and
A cannot have an inverse. �

Exercise 5 Give an alternate proof of the theorem simply using the fact that
the determinant is multiplicative.

And finally, here is how we can use the determinant to determine solutions to
systems of linear equations: Given a system like

ax + by = u

cx + dy = v,

then we take the matrix

A =

(
a b
c d

)
and, if det(A) 6 0, we define the inverse matrix

A−1 =
1

det(A)

(
d −b
−c a

)
.

Then the system of equations is simply

A

(
x
y

)
=

(
u
v

)
and its solution is (

x
y

)
= A−1

(
u
v

)
.
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