Segments, Rays, and Lines

We can use the arithmetic of vectors to understand lines better.

Classic geometry (the kind that Euclid did) studies points, lines, and other geometric figures by starting with a list of their properties (axioms) and making logical deductions from those properties. This is known as synthetic geometry, and we saw some of it in 1136 (and also probably in high school geometry).

When we introduce coordinates and use algebra to study geometry, we're doing what's known as analytic geometry. The vector arithmetic we introduced in the previous section is a part of that. In this section, we'll see how to use our vector arithmetic to make some basic calculations about lines.

Background

- Recall vector arithmetic
- Recall geometric concepts point and line

Lines in coordinates

Suppose that $P=\left(P_{x}, P_{y}\right)$ is a point in the plane. Consider the set of points $t \cdot P$ for $t \in \mathbb{R}$. This set of points is the set of all scalar multiples of P, and together it forms a line passing through P and $(0,0)$.
Now suppose that $A=\left(A_{x}, A_{y}\right)$ is another point in the plane. Consider the set of points $A+t \cdot P$. What shape does this form?

It's a line!

Exercise 1 How could you use a formula like this to make the line passing through the points A and P ?

Rays and Segments

Rays and segments are parts of lines, so to express these we just restrict the possible values of t.

Exercise 2 What restriction on t in the expression above would produce the ray which begins at A and passes through $A+P$?

Exercise 3 Suppose that P and Q are two points in the plane.
(a) Observe that the expressions $t Q+(1-t) P$ and $P+t(Q-P)$ are equivalent.
(b) Observe that for $t \in[0,1]$, the points given by these expressions form the line segment between P and Q.

Finally, how do we connect this way of expressing lines with the equations for lines we've written before? For example, suppose I have a line written in pointslope form, such as the line

$$
y=2 x-1
$$

Since this line passes through the points $(0,-1)$ and $(1,1)$, it is the same as the line

$$
t \cdot(1,1)-(1-t) \cdot(0,1)
$$

which is equal to

$$
(t, t)-(0,1-t)
$$

or

$$
(t,-1+2 t)
$$

In other words, the line $y=2 x-1$ is the set of points $(t, 2 t-1)$! This is exactly what we already knew, just writing the variable x as t instead. Observe, moreover, that the arithmetic we've done shows how to find the equation for the line passing through any two points.

Exercise 4 Consider the line given by $t \cdot(1,1)+(1-t) \cdot(-2,-1)$ for $t \in[0,1]$. Use vector arithmetic to find the equation for this line.

This section has two purposes which I hope are clear by now:

- Use vector arithmetic to easily express the points on the line between any two given points.
- This vector arithmetic is how we find the point-slope form of the equation for a line.

Applications

Now we're ready for some applications.

- Find where line crosses axes
- Find where two lines cross
- Find where line crosses circle

