# Welcome to Niles's research page.

My research applies categorical algebra to questions in stable homotopy theory. I am interested in concrete, calculational results, but I often work in abstract theory to develop computational tools. Thus my work bridges between abstract category theory and computations in homotopy theory. I am most motivated by questions about Brauer groups of commutative ring spectra, but I take a broad perspective and my work addresses a range of topics loosely related to Brauer theory.

My core research program uses symmetric monoidal algebra to model stable homotopy theory. This program is a long-term collaboration between myself, Nick Gurski, and Angélica Osorno. Our results have a combination of general theory---such as strictification via abstract 2-monad theory---and concrete results---such as categorical formulas for low-dimensional stable Postnikov invariants.

I've been involved with two other short-term projects; these have the same mix of abstract theory and computational answers, although they are less categorical in nature. In both, my contributions included non-trivial software for automated calculations. That work requires expressing the relevant theory in the most concrete possible terms.

## Research Areas

### Categorical Algebra

### Algebraic Topology

### Lie Algebra Cohomology

#### Research Pages

#### Office Information

Hopewell 184

Newark Campus

Ohio State University

1179 University Drive

Newark, Ohio 43055

Tel: +1 740 755 7856

#### Office Hours

- Mondays 10:30 – 12:00
- Wednesdays 2:15 – 3:45
- Thursdays by appointment

#### E-mail address

Fill in my first name to reveal my email address.

For more information, see the

contact page.